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Prediction of rock fragmentation using 
the Kuznetsov-Cunningham-Ouchterlony 
model
E.K. Mutinda1, B.O. Alunda1, D.K. Maina1, and R.M. Kasomo2

Synopsis
Assessment of blast fragment size distribution is critical in mining operations  because it is the initial 
step towards mineral extraction. Different empirical models and techniques are available for predicting 
and investigating the consequences of blasting, one of which is the Kuznetsov-Cunningham-Ouchterlony 
(KCO) model. In this paper we summarize the advances in the empirical models from inception until 
now, and explore the improvements that have been made so far with particular emphasis is on the most 
recent KCO model. Utilization of the model and the errors that arise between expected and the actual 
outcomes are analysed. The results indicate that the KCO model remains useful for predicting the blast 
fragmentation at limestone mine sites, despite the availability of other advanced prediction models. It is 
also a valuable instrument for pre-surveying the impact of varying certain parameters of a blast plan.
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Introduction
The initial stage of ore excavation in limestone mines is drilling and blasting, the aim of which is to 
reduce the rock to easily handleable fragments (Ouchterlony, 2005; Monjezi et al., 2010). It is essential 
that the blast fragments have the required size distribution as this affects the loading, hauling, and 
crushing processes (Ouchterlony, 2003). Accurate measurement of blasted rock fragmentation is of 
great importance in hard rock drilling and blasting (Fourney and Dick, 1996). The post-blast rock 
size distribution dramatically influences the efficiency of all the downstream rock processes, including 
comminution. In cases where there are too many boulders, the mine operator will be faced with the need 
for secondary blasting, which will have unnecessary negative consequences for the company’s cash 
flow. It also poses safety issues due to the increased risk of flyrock and air blast hazard because of the 
light stemming employed in secondary blasting (Abuhasel, 2019; Ouchterlony and Sanchidrián, 2019).

There are a number of parameters that influcence the outcome of any blasting exercise. They include 
parameters over which the operator has control and those that the operator does not. The former include 
blast design parameters such as geometrical and explosive parameters (Sharma et al., 2019) whereas 
the latter depend on the inherent properties of the rock being blasted. The geometrical parameters that 
the mine operator can control during blasting are shown in Figure 1. They include the bench height, 
burden, spacing, hole depth, sub-drill, hole diameter, stem deck, and top stemming. The explosive 
parameters includes the type of explosive used, charge density, firing pattern, and blast initiation 
systems. The other parameters, which the operator has no control over, include the hardness factor, rock 
mass rating, and rock density. 

A reliable rock fragmentation prediction model is an essential aspect of blasting operations for 
improved production. Several models have been developed to predict the particle size distribution from 
a blast. The development of fragmentation models emanates from the need to provide engineering 
solutions to blasting problems such as the optimization of run-of-mine (ROM) fragmentation (Esen, 
2013; Petrosyan, 2018). However, none of these models accurately predicts the size distribution 
from a blast. To minimize the number of boulders produced during blasting, there is a need for blasts 
to be designed and fragment size distributions modelled. This will inform the mine operator of the 
suitable blast parameters that are likely to result in the desired fragment size distribution. This has the 
advantage of  reducing the need for secondary blasting, which has a dual benefit of reduced the cost of 
operation to the mining company and increased safety for the operator.
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The two most recent empirical fragmentation models were 
introduced in 2005 and both have undergone subsequent 
modification to better predict the size of rock fragments 
and minimize the occurrence of boulders. These are the 
KCO (Cunningham, 2005) and Modified Kuz-Ram models 
(Ouchterlony and Sanchidrián, 2019), and were developed to 
overcome the shortcomings of the Kuz-Ram model (Ouchterlony 
and Sanchidrián, 2019). One of the reasons for the KCO model’s 
superiority to the other empirical models is the fact that the 
required input parameters are comparatively simple to obtain and 
apply in fragment size prediction. Newer techniques for analysing 
blast fragments have been recently proposed (Abuhasel, 2019), 
such as artificial neural networks (ANNs) and multivariate 
regression (MVR) (Cardu, Coragliotto and Oreste, 2019). 
However, building these techniques to a level such that they 
can accommodate the blast design variables as well as quantify 
the influence of inherent rock properties on the blast outcome 
is tiresome, time-consuming, and also expensive. On the other 
hand, secondary blasting due to the production of large boulders 
increases the cost and time required before any further size 
reduction can take place (Ouchterlony and Sanchidrián, 2019). 
Therefore, this research is focused on determining the possibility 
of applying the KCO model for predicting blast fragment size 
distribution in two limestone quarries in Kenya. 

Theory

Development of fragmentation models
There are several blast fragment size distribution prediction 
models that have been developed, and these can be categorized 
as either empirical or mechanistic models, depending on the 
cause of the fines production (Babaeian et al., 2019; Ouchterlony 
and Sanchidrián, 2019). The empirical models assume that finer 
fragmentation is brought about by a higher powder factor (higher 
input energy of explosives) (Franklin and Maerz, 2018), whereas 
the mechanistic models link the production of fines to the proper 
understanding of the fundamental principles of physics or the 
dynamics of detonation, or sometimes a combination of the two, 
and transfer of the blast energy during blasting. This makes 
the mechanistic models less popular at mine sites because they 
are very complex and need more complex data (Dare-Bryan, 
Mansfield, and Schoeman, 2012).

Mechanistic models are at the apex of the modelling order 
demonstrating the progressive systems. They utilize a large 
number of numerical techniques and thus require considerable 
processing power and unnecessarily long computation times 
(Ouchterlony and Sanchidrián, 2019). 

They predict blast outcomes by expressly mimicking changes 
in conditions (Cardu, Coragliotto, and Oreste, 2019). They can 
simulate bulk explosive loading and movement of rocks around 
the blast area by analysing stress or strain in the affected 
region. These models are considered the most complex models, 
that seek to explain  the behavior of system components (thus 
being known as multi-material science codes). Owing to their 
complexity, they can take days or weeks to run even on powerful 
supercomputers (Ouchterlony and Sanchidrián, 2019). Also, the 
models are reported to be less site-specific, in addition to the 
difficulty in collecting the required rock and detonation data.

Empirical computer models, in contrast, depend on the 
straightforward fitting of scientific as well as computational 
articulations to data that has been obtained from field 
measurements or potential estimations (Ouchterlony and 
Sanchidrián, 2019). These models include the 1970 model by 
da Gama (Ouchterlony and Sanchidrián, 2019), which predicted 
fragment size distribution based on the energy and explosives 
needed and rock characteristics. This model had a disadvantage 
in that it neglects the effect of stemming length, spacing, bench 
height, and does not include non-uniformity and uniformity 
predictions factors (Babaeian et al., 2019). In 1973, Larsson 
(Ouchterlony, 2005) developed another model that utilizes 
burden, spacing, specific charge, and characteristics of the rock’s 
discontinuities for prediction. However, this model did not 
perform much better in predicting particle size distribution. In 
1973 Kuznetsov (Cunningham, 2005) developed an empirical 
model that factored in the type of explosives, rock mass 
classification, influence of applied blast energy, and evaluation of 
uniformity and non-uniformity of fragmentation. In this model, 
the fragmentation is determined in terms of mass percentage, 
powder factor (applied blast energy per unit volume of rock), and 
mean fragment size (Ouchterlony and Sanchidrián, 2019).

The Kuz-Ram model was introduced in 1983 by Cunningham 
(Ouchterlony and Sanchidrián, 2019). The model is capable of 
calculating both the average fragment size, x, and the uniformity 
index, n, for the muckpile of a bench blasting round whose 
sieving curve follows the Rosin-Rammler (RR) distribution 
(fragmentation curves for equal mean size) function (Ouchterlony 
and Sanchidrián, 2019). In 1987 Kou and Rustan (Cunningham, 
2005; Sanchidrián, Segarra, and López, 2006) made an 
adjustment to Larson’s model and named this new model Sve-
DeFo (Chung and Katsabanis, 2000). The main parameters 
considered are the bench height, stemming length, the 
discontinuities’ characteristics, and the rock’s nature. This model 
also had its drawbacks, in that the assumption of the rocks’ 
features was an approximation. Also, the predicted dimensions of 
fragmented rocks were smaller than the actual values (Babaeian 
et al., 2019) . In 2000, Chung and Katsabanis used data from 
Otterness and other researchers (Ouchterlony and Sanchidrián, 
2019) collected in 1991 to verify the accuracy of the Kuz-Ram 
model (Chung and Katsabanis, 2000). They proposed that the RR 
(fragmentation curves for equal mean size) function describes 
the fragment size distribution data well enough (Ouchterlony and 
Sanchidrián, 2019).

The modified Kuz-Ram model, which was introduced in 2005 
(Ouchterlony and Sanchidrián, 2019), resembles the preceding 
Kuz-Ram model. However, the difference is the modification of 
the Kuznetsov equation by applying a 0.073 multiplier to help 
the model perform better in predicting the mean fragmentation 

Figure 1—The geometrical parameters that may influence the blast outcome
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size (Gheibie et al., 2009). The Kuz-Ram uniformity index is also 
substituted by an upgraded uniformity index, which was initially 
proposed by Cunningham (Cunningham, 2005; Sanchidrián, 
2019) and considers the blastability index, BI, of the rock in 
question (Gheibie et al., 2009; Ouchterlony, 2019).  

KCO model 
The Kuznetsov-Cunningham-Ouchterlony (KCO) fragmentation 
model is an extended form of the Kuz-Ram model. The KCO 
model replaces the Rosin-Rammler equation of the Kuz-Ram 
model with the Swebrec function, and was put into use in 
2005 by Cunningham  (Ouchterlony, 2005; Ouchterlony and 
Sanchidrián, 2019). This model was developed to help minimize 
two important weaknesses of the Kuz-Ram model: the poor 
prediction ability for fragments with  high fines content and the 
upper limit cut-off of block sizes (Bhandari, 2012; Ouchterlony 
and Sanchidrián, 2019). 

The Swebrec function that replaced the Rosin-Rammler 
equation in the Kuz-Ram model is shown in Equation [1]. 
The Swebric function includes three parameters; the 50% of 
the material size (X50) passing through the crusher gap,  the 
maximum block size (XMax), and b which is a curve undulation 
parameter which is similar to and depends on the uniformity 
index of the Kuz- Ram model ( Hekmat, Munoz, and Gomez, 
2019; Ouchterlony and Sanchidrián; 2019 Sanchidrián and 
Ouchterlony, 2017).

[1]

where P(x) is the percentage fraction of fragments passing sieve 
size X, and b is the curve undulation parameter. XMax is the 
minimum (in-situ block size; S or B). The system of equations 
that make up the KCO model is shown in Equations [2, 6, and 7].

[2]

where mean fragment size (X50) is the 50% of the material 
passing through the crusher gap, A is a rock factor as shown in 
Equation [3], q is the specific charge/powder factor (kg/m3), Q is 
the explosive weight per drill-hole (kg), and SANFO is the weight 
strength of the explosive relative to ANFO. 

A = 0.06 (RMD + RDI + HF)                                          [3]

where RMD is the rock mass description. When rock is powdery 
and friable RMD is 10, when joints are vertical RMD is JF; when 
the rocks mass is massive, RMD is 50. JF is the joint factor, 
calculated using Equation [4]: 

JF = (JCF) (JPS) + JPA                                                  [4]

where JCF is joint condition factor which assumes the value of 
1 for tight joints, 1.5 for relaxed joint, and 2 for gouge-filled 
joints. JPS is the vertical joint plane spacing; which relates to joint 
spacing Sj and ‘reduced pattern’ √BS as follows. JPS is 10 when 
Sj < 0.1 m, 20 if Sj is 0.1–0.3 m, 50 if Sj is 0.3–0.95 √BS, and 80 
if Sj > √BS. JPA is the joint plane angle; when the joints dip out-
of-face, the value is 20, when striking perpendicular to the face, 
30, and when the joints dip into the face it is 40. RDI is the rock 
density influence in kg /m3, defined by Equation [5].

RDI = [0.025. ρ] – 50	 [5]

where ρ is the density of the rock, and HF is the hardness factor. 
The curve undulating paramters, b, is defined by using Equation 
[6] :

[6]

Alternatively, b can be established by Equation [7], as 
reported by Choudhary and Gupta (2012). 

[7]

where DbMax is the least burden, spacing, or maximum in-situ 
block size and Db50 is the least burden, spacing, or maximum in-
situ block size, as suggested by Ouchterlony (2005).

Materials and methods
This research paper presents a case study of Bisil and Simba 
quarries in Kenya. Data was collected on recognition of 
pushbacks, bench faces, and geological measurement to 
determine the pre-existing fractures and their orientation, and 
spatial and explosive parameters for each blast. The joints 
present on each bench face were identified and their spacing 
measured so as to determine the rock mass rating (RMR). The 
Bisil quarry has four mining faces while Simba quarry has two 
mining faces. Extraction is done in benches. The information 
gathered was used to predict the blast fragmentation using 
the KCO model so as to ascertain the pre-blast particle size 
distribution at the two quarries. After data acquisition the blast 
was performed and fragmentation images were taken as shown 
in Figure 2a for analysis using Split-Desktop. The images were 
subsequently processed by first delineation as shown in Figure 
2b, followed by the generation of the particle size distribution 
curves. Six blasts were carried out in each quarry, and the 
fragment size distributions analysed. 

Results and discussion
Table I shows the rock parameters obtained for six blasts at each 
quarry. Table II shows the geometrical parameters used in the 
blast rounds, and the explosive parameters, including the powder 
factor and explosive weight, are presented in Table III. The rock 
mass classification was based on Bieniawski’s geomechanical 
rock classification (Bieniawski, 1988). For the prediction, a 
Python code was developed to assist in the determination of the 
model’s particle size distribution. Split-Desktop an industry-
standard software for image analysis was used to measure 
the after-blast fragment size distribution. The Split-Desktop 
is an image processing software package that uses grayscale 
to determine the particle size distribution of the blast rock 
fragments (de Souza, da Silva, and Rocha, 2018). Digital images 
are normally acquired using a digital camera or smartphone 
(Maerz, 1996). Ten images were captured using a smartphone 
fitted with Split-Camera application. 

The images were transferred to a computer and high-
quality images with a resolution of 600 dpi delineated to help 
determine measured rock size distribution using Split-Desktop 
4.1 software. After delineation, fragment size distribution was 
generated, representing the measured blast fragment particle size 
distribution. Graphs of the predicted and measured particle size 
distributions were plotted, as shown in Figure 3.  
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The regression results from the two sites were 99.0% and 
98.1%, respectively, as shown in Figure 4. These high regression 
values indicated that the predictions from the model correlated 
well with the actual results from the blasts studied. The KCO 
model seemed to have shown a better relationship between the 
predicted and the actual results for the Simba quarry than for 
Bisil quarry.

The percentage of boulders predicted and produced per blast 
was determined from the difference of total material and material 
passing the crusher gape. The crusher gape for both Simba and 
Bisil quarries was 50 cm, and any material larger than this was 
considered as a boulder. Generally, the model predicted boulders 
with error of less than 10% for all of the studied blast rounds 

in both quarries. Figure 5 shows the varying trends of the KCO 
model in predicting boulders.

It was noted that the model underestimated the amount of 
boulders from most of the blast rounds at the Bisil quarry, and 
overestimated boulders for most of the rounds at Simba. This can 
be ascribed to the difference in the rock mass characteristics at 
the two quarries. 

Conclusion
The Kuznetsov-Cunningham-Ouchterlony (KCO) model, being 
an empirical model, provides a reliable guide to the expected 
blast fragment particle size distribution, depending on the 
geology and blast design applied. The findings of this paper could 

   Table I 

  Rock parameters used in the studied blast rounds
	 Blast no.	 Hardness factor	 Joint plane spacing	 Joint plane angle	 Rock density influence	 Rock mass rating	 Specific gravity 

   Bisil	 1 	 3.7 	 50.0 	 30.0 	 12.0 	 80.0 	 2.7
   	 2 	 4.1 	 20.0 	 30.0 	 13.0 	 80.0 	 2.7
   	 3 	 3.9 	 50.0 	 40.0 	 13.5 	 80.0 	 2.7
   	 4 	 4.0 	 50.0 	 30.0 	 12.5 	 80.0 	 2.7
   	 5 	 3.8 	 50.0 	 40.0 	 14.0 	 80.0 	 2.7
   	 6 	 4.0 	 50.0 	 30.0 	 12.0 	 80.0 	 2.7
   Simba	 1 	 3.5 	 20.0 	 40.0 	 13.5 	 60.0 	 2.5
   	 2 	 4.0 	 50.0 	 20.0 	 15.0 	 50.0 	 2.5
   	 3 	 4.3 	 50.0 	 30.0 	 13.8 	 50.0 	 2.4
   	 4 	 3.9 	 50.0 	 30.0 	 13.0 	 60.0 	 2.6
   	 5 	 4.0 	 20.0 	 20.0 	 13.6 	 50.0 	 2.5
  	 6 	 4.2 	 50.0 	 30.0 	 14.0 	 60.0 	 2.5

   Table II 

  Geometrical parameters used in the studied blast rounds
	 Blast no	 Hole diameter (mm)	 Spacing (m)	 Bench height (m)	 Burden (m)	 Drilling deviation (m)	 Hole depth (m)	 Stemming (m)

   Bisil	 1 	 50.0 	 3.0 	 10.0 	 3.5 	 0.2 	 11.0 	 2.0
		 2 	 50.0 	 3.0 	 10.0 	 3.5 	 0.2 	 11.0 	 2.0
		 3 	 50.0 	 3.0 	 10.0 	 3.5 	 0.2 	 11.0 	 2.0
		 4 	 50.0 	 3.0 	 10.0 	 3.5 	 0.1 	 11.0 	 2.0
		 5 	 50.0 	 3.0 	 10.0 	 3.5 	 0.1 	 11.0 	 2.0
		 6 	 50.0 	 3.0 	 10.0 	 3.5 	 0.2 	 11.0 	 2.0
   Simba	 1 	 50.0 	 3.5 	 6.0 	 2.5 	 0.1 	 6.0 	 1.5
		 2 	 50.0 	 3.5 	 6.0 	 2.5 	 0.2 	 6.0 	 1.5
		 3 	 50.0 	 3.5 	 6.0 	 2.5 	 0.1 	 6.0 	 1.5
		 4 	 50.0 	 3.5 	 6.0 	 2.5 	 0.2 	 6.0 	 1.5
		 5 	 50.0 	 3.5 	 6.0 	 2.5 	 0.1 	 6.0 	 1.5
		 6 	 50.0 	 3.5 	 6.0 	 2.5 	 0.1 	 6.0 	 1.5

Figure 2—(a) The blasted materials with scaling objects in place, and (b) delineated image
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act as a datum for investigating the impact of changing blast 
variables. Well-studied geology and correct choice of explosives 
with a properly designed and modelled blast round can yield the 
desired fragment size, hence optimizing the cost of excavation 
of limestone. Moreover, the straightforwardness of the model 
and the overall simplicity of obtaining model input places the 
KCO model  at the cutting edge of rock fragmentation models. 
The most significant application of KCO is to guide the blast 

engineer in considering the impact of different parameters when 
endeavouring to improve blast round output.
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   Table III 

  Explosive parameters used in the studied blast rounds
   Quarry	 Blast no	 Powder factor (kg/m3)	 Explosive weight (kg/hole)	 Initiation system	 Blasting pattern

   Bisil	 1	 0.36	 60.00	 Nonel	 Staggered
		 2	 0.35	 65.00	 Nonel	 Staggered
		 3	 0.35	 62.00	 Nonel	 Staggered
		 4	 0.35	 64.00	 Nonel	 Staggered
		 5	 0.39	 65.00	 Nonel	 Staggered
		 6	 0.37	 60.00	 Nonel	 Staggered
   Simba	 1	 0.37	 45.00	 electric	 Staggered
		 2	 0.42	 50.00	 electric	 Staggered
		 3	 0.40	 47.00	 electric	 Staggered
		 4	 0.39	 50.00	 electric	 Staggered
		 5	 0.39	 49.00	 electric	 Staggered
		 6	 0.38	 50.00	 electric	 Staggered

Figure 3—Predicted and Spilt-Desktop particle size distribution curves for selected blast rounds for (a) Bisil and (b) Simba quarries. The graphs shows that the 
Split- Desktop curves closely match the KCO curves, suggesting a good prediction by the model

Figure 4—Regrssion graphs for (a) Bisil, and (b) Simba quarries

(a) (b)
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