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A B S T R A C T   

Tropical montane forests are known to support many endemic species with restricted geographic ranges. Many of 
these species are however, faced with numerous threats, most notably from habitat loss and degradation, 
invasive alien species, and climate change. Examples include Taita Apalis and Taita Thrush. Taita Apalis (Apalis 
fuscigularis) and Taita Thrush (Turdus helleri) are species of birds listed as Critically Endangered by the Gov
ernment of Kenya and the International Union for Conservation of Nature (IUCN). They are endemic to Taita 
Hills’ cloud forests in southeastern Kenya and protected under Wildlife Conservation and Management Act. As 
they face high risk of extinction, exploring their habitat suitability is imperative for their protection. To deter
mine the current spatial distribution and the key ecogeographical explanatory factors and conditions affecting 
species distribution and indirect effects on species survival and reproduction, we employed Maximum Entropy 
(MaxEnt) modelling. This study was conducted in Ngangao and Vuria forests in June and July 2019 and 2020. 
Ngangao forest is gazetted as forest reserve and managed by the Kenya Forest Service whereas Vuria is non- 
gazetted and thus remains without official protection status. Ecogeographical explanatory variables; climatic, 
remote sensing-, LIDAR-, topography- and landscape-based variables were used in modelling and separate 
models were produced. 23 occurrence records of Taita Apalis and 30 of Taita Thrush from Ngangao and 21 of 
Taita Apalis from Vuria forests were used in the modelling. According to the models, less than 7% of the total 
area of Ngangao and Vuria forests was predicted as suitable habitat for Taita Apalis and Taita Thrush. This shows 
that these two species are more vulnerable to extinction from demographic stochasticity. Consequently, man
aging their habitats is critical for their long-term persistence. LIDAR-based canopy height range and elevation 
greatly influenced Taita Apalis distribution in Ngangao forest, with areas of high elevation (1620–1750 m a.s.l.) 
and having open middle-storey preferred. Elevation, slope and topographic wetness index (twi) were the major 
determinants of Taita Thrush distribution in Ngangao, where gentle sloping areas with moderately dry surfaces 
within high elevation (1620–1730 m a.s.l.) were favoured. Mean annual temperature, Euclidean distance to the 
forest edge, slope and land cover type greatly influenced the distribution of Taita Apalis in Vuria, with gentle 
sloping areas within forest interior made up of indigenous vegetation preferred. This study proposes reforesting 
open and degraded sites next to areas predicted as highly suitable for the two species; establishment of agro
forestry belts based on indigenous trees on the boundaries of the two forests to reduce grazing and firewood 
collection pressure and enhance resilience to the edge effects; and enhancing forest protection through Partic
ipatory Forest Management.   
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1. Introduction 

The fifth edition of the Global Biodiversity Outlook (GBO 5) by the 
United Nations Convention on Biological Diversity (CBD) reveals that a 
significant fraction of wild species is projected to be at risk of extinction 
due to climate change, natural resource extraction, land use and the 
impact of other direct drivers (CBD, 2020). Land cover change in Africa 
is the fastest on Earth since the fastest growing population requires more 
agricultural land for food, which causes threats to forests and biodi
versity (Brink & Eva, 2008). 

Besides supporting rich biodiversity and endemism (Kessler & Kluge, 
2008), tropical montane forests offer essential ecosystem services 

including provision of water, carbon sequestration and storage, and 
prevention of erosion (Spracklen and Righelato, 2014; Brenning et al., 
2015). Many of the species endemic to montane regions are however, 
threatened with extinction due to habitat loss and degradation, invasive 
alien species and climate change (Millennium Ecosystem Assessment, 
2005; Malcolm et al., 2006; Guo et al., 2013; Le Saout et al., 2013; 
López-Baucells et al., 2016). 

Taita Apalis (Apalis fuscigularis) and Taita Thrush (Turdus helleri) are 
endemic bird species to Taita Hills’ cloud forests in Taita Taveta County, 
Kenya, and are listed as Critically Endangered by the Government of 
Kenya and the International Union for Conservation of Nature (IUCN). 
They have experienced severe population decline over the last years but, 

Fig. 1. Montane cloud forest remnants of the Taita Hills and location of Ngangao and Vuria forest. The close-up maps of the Ngangao and southern and northern part 
of Vuria forest indicate the species points (white points = Taita Apalis, blue points = Taita Thrush). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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nevertheless, the reasons behind the decline remain unclear (BirdLife 
International, 2019). Surveys carried out in 2009–2010 suggested that 
up to 80% of Taita Apalis population was lost since 2001 (Githiru & 
Borghesio, 2010; BirdLife International, 2010), with the current global 
population estimated at 100–150 individuals (BirdLife International, 
2010). Taita Thrush population is estimated at 1400 individuals, 
equivalent to about 930 mature individuals (Waiyaki & Samba, 2000). 
Their Afromontane forest habitats are severely fragmented and continue 
to decline in both size and quality (BirdLife International, 2019). 

Habitat loss and deterioration, mostly caused by human actions, 
have reduced global terrestrial habitat integrity (IPBES, 2019), com
bined with the longstanding relationship between habitat area and 
species numbers, have led to about 9 per cent of the world’s estimated 
5.9 million terrestrial species (more than 500,000 species) have insuf
ficient habitat for long-term survival, thus committed to extinction, 
many within decades (IPBES, 2019). Terrestrial wild species, that are 
narrowly distributed (endemic) have classically seen larger-than- 
average changes to their habitats and shown faster-than-average de
clines (IPBES, 2019). Conservation strategies of threatened and endan
gered species more often than not begin with the identification of 
occupied and productive habitat (Margules & Pressey, 2000) and the 
programs intended to protect them require information about habitat 
utilisation. For these efforts to succeed, there is need for landscape scale 
information on species distribution and the environmental factors which 
underline them (Guisan et al., 2013). 

Habitat suitability modelling (HSM), alternatively known as species 
distribution modelling (SDM), environmental niche modelling or 
ecological niche modelling (ENM), is a statistical model that uses species 
occurrence data, together with environmental data, to produce a 
correlative model of the environmental conditions that meet a species’ 
ecological needs and which can determine the potential habitat of a 
given species (Guisan & Zimmermann, 2000; Hirzel & Le Lay, 2008; 
Elith & Leathwick, 2009; Barve et al., 2011; Sillero, 2011; Lyet et al., 
2013; Fatima et al., 2016; Guisan et al., 2017; Uusitalo et al., 2019; 
Zhang et al., 2019). 

In this study, we determined the current spatial distribution and the 
key ecogeographical explanatory factors and conditions that affect Taita 
Apalis and Taita Thrush distribution in Ngangao and Vuria forests of the 
Taita Hills using MaxEnt model. MaxEnt model was chosen since many 
studies have shown that it can solve the problem of presence-only data 
availability (Elith & Leathwick, 2009; Phillips & Dudík, 2008). The 
objectives of this study were: (i) to examine which and how ecogeo
graphical factors influence the habitat suitability of Taita Apalis and 
Taita Thrush; and (ii) to create maps of the predicted occurrences of the 
two studied species. The predicted occurrence maps will be useful for 
setting targeted conservation measures at the right locations. 

2. Methods 

2.1. Study area 

Taita Hills (3◦25′S, 38◦20′E) lie in Taita Taveta County ca. 150 km 
inland from the coast of the Indian Ocean in the southeastern Kenya and 
are the northernmost extension of the Eastern Arc Mountains (EAM) of 
Kenya and Tanzania. EAM is one of the world’s 36 biodiversity hotspots 
based on global concentrations of species endemism (CEPF, 2020). The 
population of the whole Taita Taveta County has grown from 90,146 
persons in 1962 to 340,671 in the year 2019 (KNBS, 2019). This growth 
has been a central driving factor behind rising environmental pressure in 
the area (Clark, 2010). Between 1955 and 2004, approximately half of 
the cloud forests in the Taita Hills had been lost to agriculture (Pellikka 
et al., 2009). Today, only four larger fragments of indigenous cloud 
forests, between 100 and 200 ha, and nine smaller patches remain in the 
area (Siljander et al., 2020). The area receives bi-modal type of rainfall 
with long rains and short rains occurring between March and May and 
November and December. The rainfall over 1400 m a.s.l. amounts on 

average to 1300 mm annually, based on Kenya Meteorological Depart
ment statistics between 1985 and 2005. (Erdogan et al., 2011). 

Ngangao (38◦20′E, 03◦21′S) and Vuria (38◦18′E, 3◦25′S) forest 
fragments (Fig. 1) are part of Dawida Hills of the Taita Hills and hold the 
highest population of the two endemic bird species. Ngangao forest is 
gazetted as forest reserve and managed by the Kenya Forest Service. It is 
located on the eastern slope of a north–south oriented mountain ridge 
with the western slope mainly covered by open rock and patches of 
Acacia mearnsii, Cypressus lusitanica and Pinus ssp. plantations. The forest 
can be characterized as moist montane to intermediate montane forest 
(Aerts et al., 2011), having indigenous trees of about 100 species (Rogers 
et al., 2008; Schäfer et al., 2016) accompanied by pine and cypress 
stands and some individual exotic trees within native forest (Omoro 
et al., 2013; Pellikka et al., 2009). The forest covers an area of approx
imately 120 ha with the elevation ranging from 1700 to 1952 m a.s.l. 
(Omoro et al., 2010). Vuria is non-gazetted forest and thus remains 
without official protection status (Kenya Gazette Supplement No. 155 
(Acts No. 34), 2016). It retains a small cover of the montane forest of 
about 19 ha with mixed forest (exotic and indigenous) totalling to 115 
ha (Morara, 2005). It has the largest population of Taita Apalis in the 
World. It peaks at elevation of 2208 m a.s.l. The northern section of 
Vuria forest (38◦18′E, 3◦24′S) covers about 43 ha and is partly on private 
land. 

2.2. Studied species 

Endemic to Taita Hills’ forests, Taita Apalis and Taita Thrush are 
listed as Critically Endangered by the Government of Kenya and the 
International Union for Conservation of Nature (IUCN). The two species 
are protected under Wildlife Conservation and Management Act (Kenya 
Gazette Supplement No. 47, 2013). Taita Apalis which is a medium- 
sized, arboreal warbler inhabits the understorey of montane forest, 
preferring gaps and edges with thick undergrowth, where it gleans in
sects from vegetation mainly between 0 and 2 m above ground (BirdLife 
International, 2019). Data from population monitoring between 2001 
and 2015 suggested that the species has undergone a severe decline 
since 2001, with the population estimates now at 100–150 individuals 
(Githiru & Borghesio 2010; BirdLife International 2010; BirdLife Inter
national, 2019). It had been documented to occur in Mbololo, Ngangao, 
Chawia, Fururu, and Vuria forest fragments (Brooks et al., 1998; Nature 
Kenya et al., 2015). However, an intensive survey in 2015 failed to 
locate the species in Chawia, Fururu and Mbololo forest fragments, an 
indication that the species might now be either very rare or locally 
extinct in these forest fragments (BirdLife International, 2019). Taita 
Apalis’ range inside Ngangao forest has reduced significantly (Borghesio 
et al., 2014), with Vuria population appearing stable in its range (Nature 
Kenya et al., 2015). 

Taita Thrush is also confined to montane cloud forest (Waiyaki & 
Samba, 2000), not venturing into secondary growth, scrub or cultivated 
areas, although the areas where it occurs have been heavily logged in the 
past (Brooks, 1997). Despite much research, very few inter-fragment 
movements have been recorded (Waiyaki & Samba, 2000). It is 
confined to four forest patches in the Taita Hills: Mbololo (185 ha), 
Ngangao (206 ha), Chawia (111 ha) and Iyale (88 ha) (Brooks, 1997), 
the areas indicating fragment size combined of indigenous and exotic 
forest from Pellikka et al. (2009). At certain times of the year its diet is 
primarily fruit, but it also consumes invertebrates (Brooks 1997, Bird
Life International, 2019). In 1997, a total population of ca. 1350 birds, 
with ca. 1060 in Mbololo, ca. 250 in Ngangao and ca. 38 in Chawia was 
observed (BirdLife International, 2019), although the effective popula
tion size is likely to be lower due to a male-biased sex ratio. In 2009 and 
2015 surveys confirmed continued presence of the species in Mbololo 
and Ngangao fragments (BirdLife International, 2019). 
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2.3. Species data collection 

Acquisition of Taita Apalis and Taita Thrush occurrence data in 
Ngangao and Vuria was undertaken in June and July 2019 and 2020. 
Standardized Point Counts’ technique was used. 100 × 100 m grid for 
point sampling was developed using ArcGIS 10.5. The grid comprised of 
139 and 160 centre points (sampling points) covering the entire of 
Ngangao and Vuria forests, respectively. At each sampling point, within 
50 m-radius plot, coordinate of the location where the bird was sighted 
was recorded using Garmin eTrex 30 Handheld GPS receiver. At each 
point, birds were sampled for 10 min on sunny days, both in the early 
morning (6:00–9:30 a.m.) and late afternoon (15:30–18:00p.m.) by two 
observers. A total of 23 occurrence records of Taita Apalis and 30 of 
Taita Thrush were collected in Ngangao forest and 21 of Taita Apalis in 
Vuria forest, and used in the modelling. 

2.4. Ecogeographical explanatory variables 

We derived different sets of ecogeographical variables; first set of 
variables were based on airborne LiDAR data: canopy height and canopy 
relief, point cloud penetration, and percentage of 4th returns. Second set 
of variables were topographical: elevation, slope, aspect, topographic 
wetness index, and profile curvature. Third set of variables describing 
vegetation of the forests interpreted from airborne hyperspectral remote 
sensing data. Fourth set of variables were landscape variables based on 
Euclidean distance calculations, and fifth set were climate based vari
ables annual mean temperature (◦C) and annual mean relative humidity 
(%) (See Table 1). 

To derive topographical and LiDAR point cloud based variables, we 
used data from flight campaign carried out with Airborne Laser Scan
ning (ALS) sensor on 3–8 February 2013. Data vendor (Topscan Gmbh, 
Germany) pre-processed the data and delivered it as a geo-referenced 
point cloud in UTM/WGS84 coordinate system with ellipsoidal 
heights. TerraScan software (Terrasolid Ltd., Finland) was used to create 
digital terrain model (DTM) at 1 m resolution. DTM was imported to 
ArcGIS 10.3.1 to calculate elevation, slope, aspect, topographic wetness 
index, and profile curvature. FUSION software (McGaughey, 2016) was 
utilised to calculate variables from point cloud data. Firstly, Cloud met
rics function was employed to calculate canopy relief ratio ((mean 
elevation – min elevation)/(max elevation – min elevation)). Canopy relief 
ratio is a quantitative descriptor of the relative shape of the canopy from 
altimetry observation (Pike & Wilson, 1971; Parker & Russ, 2004) which 
describes the degree to which canopy surfaces are in the upper (crr >
0.5) or in the lower (crr < 0.5) portions of the height range. Next, per
centage of fourth returns above 2 m height was calculated to estimate 
point penetration close to the ground. Then, cover function was applied 
for canopy closure estimates with output values ranging from 0.0 to 
100.0 percent. The penetration parameter that computes the proportion 
of the pulses that penetrate canopy to reach the ground was selected 
with 20 m cell size and a ground tolerance of 2 m. 

For vegetation characteristic variables hyperspectral imagery ac
quired using AisaEAGLE VNIR push-broom type sensor (Specim, 2012) 
simultaneously with LiDAR data was used. Data processing phases 
included radiometric correction and boresight calibration with CaliGeo 
4.9.15 software (Specim, 2009); geometric correction with Parge soft
ware (Schläpfer, 2011); and atmospheric correction with ATCOR-4 
(Richter and Schläpfer, 2011). In addition, minimum noise fraction 
(MNF) transformation (Green et al., 1988) with ENVI 5.0 software to 
segregate noise in the data, to reduce the number of spectral bands, and 
to pack the majority of the useful information in the first bands (Pet
ropoulos et al., 2012; Ghosh et al., 2014) was carried out. The first MNF 
transformed band which best differentiated the vegetation characteris
tics in Ngangao forest was selected. Geospatial variable describing tree 
species richness in the Ngangao forest from Schäfer et al., (2016) was 
applied. 

For climate based variables we used annual mean temperature (◦C) 

Table 1 
Ecogeographical variables used in modelling.  

Variable abbreviation Description and 
source of variable 

Type Resolution 
(m) 

aspect_mean_20m Aspect (◦) based on 
DTM (0–360) 

Topography 20 

curvature_mean_20m Curvature based on 
DTM data and 
curvature 
calculation (second 
derivative of the 
DTM) 

Topography 20 

dtm_mean_20m Elevation (m a.s.l.) 
based on DTM 

Topography 20 

dtmrange_20m Elevational range 
(m a.s.l.) based on 
DTM 

Topography 20 

slope_mean_20m Mean slope in 20 m 
analysis square 
(derived from DEM 
in degrees 0–90). 

Topography 20 

Ngangao_twi_mean20m 
and vuria_twi_mean20m 

Topographic 
wetness index 
(TWI) based on 
DTM and ‘TWI’ 
calculation (Ln(a/ 
tanB), Beven & 
Kirkby (1979)) 

Topography 20 

canopyheight_mean_20m Mean canopy 
height (meters) 
based on LIDAR 
(ALS) point cloud 
data 

LIDAR point 
cloud data 

20 

canopyheight_max_20m Maximum canopy 
height (meters) 
based on LIDAR 
(ALS) point cloud 
data 

LIDAR point 
cloud data 

20 

canopyheight_range_20m Canopy height 
range (meters) 
based on LIDAR 
(ALS) point cloud 
data 

LIDAR point 
cloud data 

20 

canopyrelief Canopy relief 
(ratio) based on 
LIDAR (ALS) point 
cloud data 

LIDAR point 
cloud data 

20 

coverreturn4 Cover return 4 (%) 
based on LIDAR 
(ALS) point cloud 
data 

LIDAR point 
cloud data 

20 

Penetrat Penetration (%) 
based on LIDAR 
(ALS) point cloud 
data 

LIDAR point 
cloud data 

20 

aisaband1 Airborne imaging 
spectroscopy data 
based on MNF 
transformed band- 
1 radiation data 

Remote sensing 
based forest 
characteristics 

20 

Species_Diversity Species Diversity 
based on AISA and 
LIDAR (ALS) data 
(mean species 
richness integer 
value) 

Remote sensing 
based forest 
characteristics 

20 

forest_edge_Distance Edge distance to 
forest edge(meters) 
based on GPS point 
data and Euclidean 
distance 
calculation 

Landscape 20  

Correlated with:   
Annual mean 

temperature (◦C) 
Elevation – 
topography - ( 
Virtanen, 2015) 

Climate 20 

Annual mean relative 
humidity (%) 

Elevation – 
topography - ( 
Virtanen, 2015) 

Climate 20  
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and annual mean relative humidity (%) data by Virtanen (2015). 
Euclidean distance calculation from Taita Apalis and Taita Thrush oc
currences points to Ngangao and Vuria forest edges was used as land
scape variable. 

Before modelling, Zonal Statistics function (ESRI, 1991) in ArcGIS 
10.3.1 was used for all ecogeographical variables to summarize values 
within each of the 20 m analysis squares across Ngangao and Vuria 
forests to match with the species occurrence data sets. Ecogeographical 
variables were harmonized to 20 × 20 m grid cells due to the following 
reasons: (i) We used 20 m cell size to produce meaningful forest cover 
estimates from LiDAR data, as it has been pointed out that the analysis 
cell size must be larger than individual tree crowns and suggestion is to 
use 15 m or larger grid cell size (McGaughey, 2016), (ii) less than 20 m 
analysis square size would increase the sample size ending up to pseu
doreplication in statistical analysis (Hurlbert, 1984), and (iii) pixel size 
for climate based variables was 20 m. As a final adjustment, granite 
outcrops areas in Ngangao forest were masked out from the geospatial 
data set before modelling process to reduce errors. Taita Apalis and Taita 
Thrush have not been sighted on the rock outcrops. 

3. Habitat suitability modelling 

3.0.1. Model calibration 

This study used MaxEnt (Maximum Entropy) version 3.3.3e 
machine-learning algorithm to model the distribution of Taita Apalis in 
Ngangao and Vuria and Taita Thrush in Ngangao forest. This model uses 
presence-only machine learning algorithm (Phillips et al., 2006; Gomes 
et al., 2018) to approximate the probability of occurrence on the basis of 
species data and different environmental constraints. In our models, we 
selected 75% of occurrence data for model training and 25% for model 
testing (Hernandez et al., 2008; Phillips & Dudík, 2008), maintaining 
other values as default. We used ‘bootstrap’ approach as a sampling 
technique (replicated run type) since it has been found to be optimal for 
studies with few occurrences (Elith et al., 2011). Prior to modelling, 

each predictor variable was run in MaxEnt independently in order to get 
the Area Under the Receiver Operating Characteristics Curve (AUC) 
value of the training data (Abdullah, 2016). Then, the generated values 
were used to rank the predictor variables from the highest to the lowest 
values and this ranking was utilized as a reference for selection of 
appropriate predictor variables in each model (Abdullah, 2016). The 
predictor variables were grouped into: (i) topography related (slope_
mean_20m, dtm_mean_20m, dtmrange_20m, twi_mean_20m, curvatur
e_mean_20m and aspect_mean_20m), and (ii) vegetation characteristics 
related (aisaband1, canopyheight_mean_20m, penetrat, coverreturn4, for
est_edge_Distance, Species_Diversity, canopyheight_max_20m, canopyrelief 
and canopyheight_range_20m) to examine the role and influence of each 
predictor variable based on their categories (Abdullah, 2016). Based on 
the AUC value of training data, Model1 (the top 5), Model2 (all predictor 
variables) and model3 (top 3 per category) were generated (Table 2). 
Fewer models were applied in Vuria forest compared to Ngangao owing 
to the ‘sparse’ explanatory data used (Table 3). Jackknife analyses were 
performed to determine variables that reduce the model reliability when 
omitted and 10 random partitions were made for each model in order to 
assess the average behaviour of the algorithms, and to allow for statis
tical testing of observed differences in performance. Random seed was 
selected to ensure that replicates were not identical. We used maximum 
training sensitivity plus specificity to get the threshold value of each 
model, a promising selection method for presence-only data (Abdullah, 
2016; Norris, 2014; Liu et al, 2013). 

3.0.2. Model evaluation 

We used the Area Under the Receiver Operating Characteristics 
Curve (AUC) to evaluate model performance. Value of AUC ranges from 
0 to 1 (Fielding & Bell, 1997). An AUC value of 0.50 indicates that model 
did not perform better than random, whereas a value of 1.0 indicates 
perfect discrimination (Swets, 1988). The model with the highest test 
AUC value was considered the best performer. In addition, we used 
response curves to demonstrate the influence of the most important 
ecogeographical variables on the MaxEnt. 

3.0.3. Habitat suitability maps 

Habitat suitability maps were generated based on the prediction 
models. The probability values were reclassified into four habitat suit
ability classes, i.e. ‘unsuitable’ (0–0.2), ‘low’ (0.2–0.4), ‘moderate’ 
(0.4–0.6), and ‘high suitability areas’ (0.6–1). This type of map classi
fication has been applied to large number of studies (Ansari & Ghod
dousi, 2018; Convertino et al., 2014; Zhang et al., 2019). 

4. Results 

4.1. Model performance 

All models provided reliable estimates of Taita Apalis and Taita 
Thrush distribution in Ngangao and Vuria forests (AUC > 0.7) and small 
differences in the test and training AUC values indicated very low over- 
fit in the prediction results (Appendix A, Tables A1 to A8). The model2 
produced the highest AUC values of training data: Taita Apalis model2 in 
Ngangao forest had AUC value of 0.924, Taita Apalis model2 in Vuria 
forest had AUC value of 0.935 and Taita Thrush model2 in Ngangao 
forest had AUC value of 0.891. For test data, however, there were mixed 
results. E.g. While Taita Apalis model2 in Ngangao and Vuria forest had 
the highest test AUC values (AUC = 0.809 and 0.890 respectively), Taita 
Thrush model3 in Ngangao forest had the highest test AUC value (AUC =
0.783) (Appendix A, Tables A1 to A8). 

4.2. Analysis of variable contributions 

Tables 4, 5 and 6 show the contribution of each explanatory variable 

Table 2 
Three MaxEnt models applied for species distribution of Taita Apalis and Taita 
Thrush in Ngangao forest.  

Model Description 

1 Top 5 of AUC value of training data: slope_mean_20m, dtm_mean_20m, 
canopyrelief, dtmrange_20m and canopyheight_range_20m (for Taita Apalis) 
and dtm_mean_20m, aisaband1, canopyheight_mean_20m, penetrat and 
slope_mean_20m (for Taita Thrush). 

2 All the predictor variables: slope_mean_20m, dtm_mean_20m, canopyrelief, 
dtmrange_20m, canopyheight_range_20m, Ngangao_twi_mean20m, 
curvature_mean_20m, aisaband1, aspect_mean_20m, forest_edge_Distance, 
Species_Diversity, canopyheight_max_20m, canopyheight_mean_20m, 
coverreturn4 and penetrat. 

3 Top 3 of the highest AUC value of training data per category: 
slope_mean_20m,dtm_mean_20m,dtmrange_20m,canopyrelief, 
canopyheight_range_20m and aisaband1(for Taita Apalis) and dtm_mean_20m, 
slope_mean_20m,dtmrange_20m,aisaband1 ,penetrat,canopyheight_mean_20m 
(for Taita Thrush)  

Table 3 
Two MaxEnt models applied for species distribution of Taita Apalis in Vuria 
forest.  

Model Description 

1 Top 5 of AUC value of training data: Annual mean temperature, 
slope_mean_20m, aspect_mean_20m, forest_edge_Distance and 
canopyheight_mean_20m. 

2 All the predictor variables: slope_mean_20m, vuria_landcover_2004_20m, 
vuria_twi_mean20m, canopyheight_mean_20m, forest_edge_Distance, 
aspect_mean_20m, Annual mean temperature and curvature_mean_20m. 

AUC = area under the ROC curve, ROC = receiver operating characteristics. 
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within the selected MaxEnt models. LIDAR-based canopy height range 
and mean elevation variables had the highest contributions in all the 
models for Taita Apalis in Ngangao forest (Table 4). The total contri
bution rate of variables related to vegetation characteristics was higher 
than topography in all Taita Apalis models in Ngangao forest. For Taita 
Thrush in Ngangao forest, elevation was the major ecogeographical 
contributor for the models followed by slope, topographic wetness index 
(twi) and mean canopy height (Table 5). The total contribution rate of 
variables related to topography outperformed vegetation characteristics 

in all Taita Thrush models in Ngangao forest. In Vuria forest, mean 
annual temperature, Euclidean distance to the forest edge, slope and 
land cover contributed greatly to Taita Apalis models (Table 6). The 
total contribution rate of variables related to vegetation characteristics 
performed the best followed by variables related to topography and 
climate. 

4.3. Response curves 

We focused our examination of the response curve on variables 
whose contribution rates were more than 10% (Figs. 2, 3 and 4). The 
occurrence of Taita Apalis in Ngangao forest was found to be negatively 
correlated with elevation, canopy relief and slope, where the probability 
of its presence decreased with increase in elevation, canopy relief and 
slope (Fig. 2). Areas on slopes of less than 5◦, within elevation between 
1620 and 1750 m a.s.l. and with canopy relief of less than 0.1 were the 
most preferred. Probability of Taita Apalis occurrence however 
increased with increase in canopy height range and Euclidean distance 
to the forest edge. Areas with canopy height range of 47–55 m and were 
60 m and above from Ngangao forest edge were the most preferred 
(Fig. 2). 

The occurrence of Taita Thrush in Ngangao forest was positively 
correlated with mean canopy height and topographic wetness index 
(twi), where the probability of its presence increased with increase in 
mean canopy height and topographic wetness index (twi). Areas with 
topographic wetness index (twi) of 8.3–8.8 and canopy height of 37–41 
m were the most preferred (Fig. 3). It showed similar trend with LiDAR 
penetration and airborne imaging spectroscopy band-1 reflectance, but 
decreased rapidly after values of about 10% and 1 respectively (Fig. 3). 
The probability of Taita Thrush occurrence however decreased with 
increase in elevation and slope. Areas on slopes of less than 5◦and within 
elevation between 1620 and 1730 m a.s.l., were the most preferred 
(Fig. 3). 

The occurrence of Taita Apalis in Vuria forest was found to be 
negatively correlated with mean annual temperature and slope, where 
the probability of its presence decreased with increase in mean annual 
temperature and slope. Areas with mean annual temperature of 
11.5 ◦C–12 ◦C and on slopes of less than 1◦were the most preferred 
(Fig. 4). The probability of Taita Apalis occurrence increased with in
crease in distance from the forest edge to about 270 m, beyond which, it 
decreased rapidly (Fig. 4). Land cover type was also found to have 
influenced Taita Apalis presence in Vuria forest, where the cover type 
made up of indigenous tree species was the most preferred (Fig. 4). 

4.4. Predicted distribution of bird species in two forests 

Predicted probability of the two bird species is displayed by three 
maps (Figs. 5, 6 and 7). Probability of Taita Apalis presence was found to 
be high on the southern, eastern and north-eastern parts of Ngangao 
forest (Fig. 5), whereas for Taita Thrush, the predicted probability of 
presence was higher on the northern part of Ngangao forest than in the 
southern part (Fig. 6). In these maps, white colour inside Ngangao forest 
represents bare granite outcrop. In Vuria, the predicted probability of 
Taita Apalis presence was high on the southern and eastern sides of the 
southern patch and on the western side of the northern patch (Fig. 7). 

4.5. Percentage of suitable habitat and suitability maps for the two bird 
species 

Based on the model results, 20–50% of Ngangao forest was cat
egorised as unsuitable habitat for Taita Apalis, 37–43% as habitat of low 
suitability, 4–37% as habitat of moderate suitability and 2–7% as habitat 
of high suitability (Fig. 8). For Taita Thrush, 16–39% of Ngangao forest 
was considered as unsuitable habitat, 42–53% as habitat of low suit
ability, 16–36% as habitat of moderate suitability and 2–6% as habitat of 
high suitability (Fig. 9). For Vuria forest, 64–67% was classified as 

Table 5 
Percentage contribution of predictor variables in three MaxEnt models of Taita 
Thrush in Ngangao forest.   

Taita Thrush in Ngangao 

S/NO Variable Contribution (%) 

Model1 Model2 Model3 

1 Species_Diversity  –  1.3  – 
2 aisaband1  17.4  8.7  12.5 
3 aspect_mean_20m  –  7.3  – 
4 canopyheight_max_20m  –  0.3  – 
5 canopyheight_range_20m  –  6.2  – 
6 Canopyrelief  –  2.6  – 
7 coverreturn4   9.2  – 
8 canopyheight_mean_20m  15.1  6.3  18.5 
9 curvature_mean_20m  –  2.1  – 
10 dtm_mean_20m  31.6  19.0  34.3 
11 dtmrange_20m  –  0.4  0.8 
12 forest_edge_Distance  –  5.6  – 
13 Penetrat  15.7  8.8  11.9 
14 slope_mean_20m  20.1  7.6  21.9 
15 Ngangao_twi_mean20m  –  14.6  –  

Table 6 
Percentage contribution of predictor variables in two MaxEnt models of Taita 
Apalis in Vuria forest.  

Taita Apalis in Vuria forest 

S/No Variable Contribution (%) 

Model1 Model2 

1 vuria_aspect_20m  8.5  6.8 
2 vuria_CHM_20m  9.3  9.1 
3 vuria_eucdist_to_edge_20m  28.1  23.6 
4 vuria_mean_temperature_annual_20m  34.5  20.5 
5 vuria_slope_20m  19.6  20.1 
6 vuria_curvature_dem_20m  –  1.0 
7 vuria_landcover_2004_20m  –  12.3 
8 vuria_twi_mean20m  –  6.5  

Table 4 
Percentage contribution of predictor variables in three MaxEnt models of Taita 
Apalis in Ngangao forest.  

Taita Apalis in Ngangao forest 

S/No Variable Contribution (%) 

Model1 Model2 Model3 

1 Species Diversity  –  2.1  – 
2 aisaband1  –  2.5  10.4 
3 aspect_mean_20m  –  9.1  – 
4 canopyheight_max_20m  –  1.6  – 
5 canopyheight_mean_20m  –  0.7  – 
6 canopyheight_range_20m  44.3  13.8  38.9 
7 Canopyrelief  20.5  8.1  7.8 
8 coverreturn4  –  16.4  – 
9 curvature_mean_20m  –  1.1  – 
10 dtm_mean_20m  21.4  9.7  27.1 
11 dtmrange_20m  2.1  0.9  2.5 
12 forest_edge_Distance  –  14.9  – 
13 Penetrat  –  8.8  – 
14 slope_mean_20m  11.7  9.6  13.3 
15 Ngangao_twi_mean20m  –  0.8  –  
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unsuitable habitat for Taita Apalis, 23–25% as habitat of low suitability, 
6–10% as habitat of moderate suitability and 1–4% as habitat of high 
suitability (Fig. 10). Based on these modelling results, suitable habitat 
for Taita Apalis covers less than 7% of Ngangao forest and less than 4% 
of Vuria forest. The results further show that Taita Thrush occupies less 
than 6% of Ngangao forest. 

5. Discussion 

The habitat suitability of Taita Apalis and Taita Thrush models 
produced interpretable predictions of the species distribution. Where 
suitable conditions were predicted, the species distribution patterns 
were uniformly clustered. This pattern of distribution might be related 
to the small sample size of occurrence data as well as clustered data of 
the two species sightings. This issue had also been observed by Falck 
et al. (2016). In addition, clustered data has shown to cause MaxEnt to 
over-fit models to the environmental conditions at those limited loca
tions see for example Syfert et al. (2013). The stability of the models was 
verified by 10 repeated AUC values and all were found to have mean 
AUC values above 0.755 and the small differences in the test and 
training AUC values indicate very low over fit in the prediction results 
verifying that all the MaxEnt models were robust. Model2 (all predictor 

variables) produced the highest AUC values of training data. This 
outcome is in agreement with the findings of Abdullah (2016). 

5.1. Importance of environmental factors 

LIDAR-based canopy height range, elevation, percentage of LiDAR 
4th return, Euclidean distance to the forest edge and slope appeared to 
be the major environmental variables contributing to the current dis
tribution of Taita Apalis in Ngangao forest; elevation, slope, topographic 
wetness index (twi), mean canopy height, Airborne imaging spectros
copy band-1 reflectance and LiDAR penetration were major de
terminants of Taita Thrush current distribution in Ngangao while mean 
annual temperature, Euclidean distance to the forest edge, slope and 
land cover type appeared to be the major environmental variables 
influencing the current distribution of Taita Apalis in Vuria forest. 

Basic topographic factors (e.g. slope, elevation) alter microclimatic 
conditions and indirectly influence the growth and distribution of land 
cover, consequently affecting bird distribution and abundance. Slope 
has a significant contribution towards microclimatic conditions which 
influence the growth and distribution of vegetation. It affects the 
amount of solar radiation received by vegetation, soil moisture, and 
microclimatic variables (Bennie, Huntleya, Wiltshirea, Hill, & Baxtera, 

Fig. 2. Response curves of environmental variables of Taita Apalis in Ngangao forest: (A) canopy height range, (B) elevation, (C) slope, (D) Euclidean distance to the 
forest edge, (E) percentage of LiDAR 4th return, and (F) canopy relief. 
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2008), ultimately affecting birds’ abundance and distribution. As 
demonstrated by this study, Taita Apalis and Taita Thrush prefer gentle 
sloping areas inside Ngangao and Vuria forests. Gentle slopes could be 
helping them to avoid nest predation. Although elevation may have an 
indirect effect on the distribution of species, it can largely influence the 
availability of food resources. Food supply has been shown to have the 
most direct impact on animal survival, reproduction success and popu
lation size (Newton, 2003). Our results indicated that Taita Apalis and 
Taita Thrush favour high elevations in Ngangao and Vuria forests. High 
elevation areas could be offering them better foraging, nesting and 
roosting opportunities. 

Topographic wetness index (twi) is as an index that is capable of 
predicting areas susceptible to wetted land surfaces and areas that have 
strong potential to produce overland flow (Beven et al., 1984), and a 
good proxy of soil moisture (Chen & Yu, 2011). As shown, Taita Thrush 
prefers areas of Ngangao forest with topographic wetness index of 8.3 – 
8.8 (Fig. 3) indicating that they favour areas with moderately dry 
surfaces. 

Forest canopy height is one of the most significant indicators of forest 
biomass, site quality, species diversity, and other ecosystem functions 

(Fang et al., 2006; Moles et al., 2009). In Ngangao forest, Taita Apalis 
was found to prefer areas with open middle-storey as indicated by 
canopy height range of 47–55 m (Fig. 2). Open middle-storey allows 
light and space for the development of thick undergrowth. Taita Thrush 
was found to favour areas with fairly closed canopies and having mean 
height of 37– 41 m (Fig. 3). 

Taita Apalis showed strong association with Euclidean distance to 
the forest edge in both Ngangao and Vuria forests. However, the distance 
preference was varied. For example while there was high probability of 
Taita Apalis presence at Euclidean distance to the forest edge of 60 m 
and above in Ngangao forest, about 270 m to the forest edge was 
preferred in Vuria forest. Possible reason for this variation could be the 
higher numbers of Taita Apalis predators in Vuria compared to Ngangao 
forest and therefore the interior of Vuria forest provide much needed 
protection from the potential predators. 

5.2. Potential distribution and habitat suitability 

Habitat suitability area of Taita Apalis and Taita Thrush was classi
fied to unsuitable, low, moderate and high suitability. Generally, the 

Fig. 3. Response curves of environmental variables of Taita Thrush in Ngangao forest: (A) mean canopy height, (B) slope, (C) elevation, (D) percentage LIDAR 
penetration, (E) topographic wetness index (twi), and (F) airborne imaging spectroscopy band-1 reflectance. 
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habitat suitability rate produced by each model was varied, and un
suitable and low classes were always given the highest suitability in each 
MaxEnt model. The models predicted that less than 7% of Ngangao and 
less than 4% of Vuria forest might be suitable for the activities of Taita 
Apalis and less than 6% of Ngangao forest being suitable for the activ
ities of Taita Thrush. 

Suitable habitats for Taita Apalis were predicted on the southern, 
eastern and north-eastern sides of Ngangao forest (Fig. 5), and on the 
southern and eastern sides of southern patch and on the western sides of 
northern patch of Vuria forest (Fig. 7). For Taita Thrush, suitable habi
tats were predicted mainly on the northern parts of Ngangao forest. High 
presence of Taita Apalis on the north and south of Ngangao forest has in 

reality been recorded, with the south supporting densities three times 
lower than the north (Borghesio et al., 2010). Unsuitable habitats were, 
however, predicted mainly on the western sides of Ngangao for both 
species and on the western sides and towards the forest edges of the 
southern patch and on the northern and southern parts of the northern 
patch of Vuria forest. Suitable habitats were predicted within the 
indigenous vegetation whereas unsuitable habitats were predicted 
mainly in the exotic tree plantation. This conforms to records in litera
ture on preferred habitats for Taita Apalis and Taita Thrush (Borghesio 
et al., 2015; Borghesio et al., 2017). Although exotic tree plantations are 
strongly avoided by Taita Apalis (Borghesio et al., 2015), foraging in
dividuals of Taita Apalis and Taita Thrush had occasionally been 

Fig. 4. Response curves of environmental variables of Taita Apalis in Vuria forest: (A) mean annual temperature, (B) Euclidean distance to the forest edge, (C) slope 
and (D) land cover type. 
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observed within some exotic plantation patches in Ngangao forest 
(Borghesio et al., 2017), underscoring their significance. 

5.3. Conservation implications 

The models utilized herein produced high AUC values for Taita 
Apalis in Ngangao forest, Taita Thrush in Ngangao forest and Taita 
Apalis in Vuria forest, indicating reliable estimations and hence can be 
applied in detecting highly suitable areas for the two species in other 
parts of the Taita hills. In addition, the small differences in AUC values 
for Taita Apalis and Taita Thrush models, indicating that one model can 
reliably predict the distribution of another species. 

This study has shown that less than 7% of the two forests was suitable 
for the activities of Taita Apalis and Taita Thrush. The small habitat sizes 
as predicted are expected to influence extinction risk of these two spe
cies by reducing their carrying capacity, thus reducing the buffer that 
exists between the long-run average population size and extinction. 
Accordingly, populations in smaller habitats are more vulnerable to 
extinction from demographic stochasticity, which is strongest for small 
populations (Desharnais et al., 2006; Griffen & Drake, 2008; Lande et al., 
2003). Efforts should therefore be put on preventing further habitat loss 
and disturbance, restoring habitat quality and increasing connectivity 
between the two forest fragments (Van de Peer, 2013). Our conservation 
recommendations focus on habitat expansion, connectivity and 
protection. 

5.3.1. Habitat expansion and connectivity 
Previous studies showed that forest bird species such as Taita Apalis 

and Taita Thrush display only restricted gene flow among forest patches 
(Lens et al., 1999; Callens et al., 2011; Teucher et al., 2020). Conse
quently, it is fundamental to increase cloud forest connectivity to protect 

Fig. 5. Predictive occurrence map of Taita Apalis in Ngangao forest in Taita 
Hills based on model 2. Warmer colours represent areas of higher probability. 
White colour inside the forest are bare granite outcrop. 

Fig. 6. Predictive occurrence map of Taita Thrush in Ngangao forest in Taita 
Hills based on model 3. Warmer colours represent areas of higher probability. 
White colour inside the forest are bare granite outcrop. 

Fig. 7. Predictive occurrence map of Taita Apalis in Vuria forest in Taita Hills 
based on model 2. Warmer colours represent areas of higher probability. 
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populations and species (Lens et al., 2002; Aben et al., 2012; Haddad 
et al., 2015; Teucher et al., 2020). The forest corridor connecting Vuria 
and Ngangao could be the most efficient through Iyale forest enabling 
breeding in Iyale, a proposed stepping stone between Ngangao and 
Chawia by Githiru et al. (2011). This will significantly improve habitat 
networks for diverse species and forest-related ecosystem services 

(Teucher et al., 2020). However, the smallholding land ownership in the 
study area limits the realization of this dream. We recommend con
necting Vuria and Ngangao through Iyale forest using agroforestry sys
tem based on indigenous trees (Teucher et al., 2020). The community 
forests within the proposed corridor should also be targeted for con
version into indigenous vegetation. 

Fig. 8. Graph of habitat suitability for Taita Apalis in Ngangao forest based on three models.  

Fig. 9. Graph of habitat suitability for Taita Thrush in Ngangao forest based on three models.  

Fig. 10. Graph of habitat suitability for Taita Apalis in Vuria forest based two models.  
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As illustrated, less than 7% of the two forests was predicted as being 
suitable for the activities of Taita Apalis and Taita Thrush, and thus the 
need for habitat expansion. To achieve this, we propose reforestation 
with indigenous tree species of open and degraded sites next to areas 
predicted as highly suitable for the two birds. The targeted sites for 
reforestation should be the ones on the southern, eastern and north- 
eastern sides of Ngangao forest and the southern and eastern sides of 
southern patch and the western sides of northern patch of Vuria forest. 
In addition, such areas should be within elevation range of 1620–1750 
m a.s.l., gentle slopes and having moderately dry surfaces in case of 
Ngangao forest. Our results will support restoration efforts by organi
zations such as Nature Kenya which is in the process of restoring 115 ha 
of forest adjacent to the northern patch of Vuria (BirdLife International, 
2021). 

Although 6.28 ha has been secured from land owners through land 
lease and purchase for Taita Apalis within the northern patch of Vuria 
forest (BirdLife International, 2021), the remaining indigenous forest on 
the private land might not survive for long without active protection 
(Borghesio & Wagura, 2012). This study proposes compensation 
scheme/easement for land owners within the northern patch of Vuria 
forest to preserve the remaining native vegetation on their land for Taita 
Apalis. Urgent protection of remaining native vegetation, particularly on 
privately owned plots between the southern and northern patch of Vuria 
forest, through the purchased/leased land where Taita Apalis had been 
documented is also vital (BirdLife International, 2021). 

5.3.2. Habitat protection 
Management of Ngangao and Vuria forest should focus on preventing 

or reducing severe human impacts such as grazing, forest fire incidences 
and firewood collection. This should be regarded as a complementary 
measure with long-term effects on bird richness (Santos et al., 2002). 
This study proposes the establishment of agroforestry belts based on 
indigenous trees on the boundaries of Ngangao and Vuria forests to 
create favourable conditions for secondary forest growth and thus, 
enhancing resilience of the forest fragments to the edge effects and 
conserving the remaining biodiversity (Wekesa et al., 2018). The belt 
will also reduce human impacts such as grazing and firewood collection, 
the practices which destroy the preferred foraging habitat of insectivo
rous bird species (Nature Kenya et al., 2015; Van de Peer, 2013). Several 
Taita Apalis territories have been lost in Ngangao and Vuria forests to 
these practices (Nature Kenya et al., 2015). 

Community involvement in protection of these two forests should be 
enhanced through Participatory Forest Management (PFM), an 
approach which deliberately involves the forest adjacent communities 
and other stakeholders in sustainable management of forests within a 
framework that contributes to community’s livelihoods (Kenya Forest 
Service—KFS, 2015). In this arrangement, each forest is required to have 
a management plan (Kenya Gazette Supplement No. 155 (Acts No. 34), 
2016) and the forest adjacent community to sign forest management 
agreement with Government to formalize what has been agreed on in 
the management plan. Currently Vuria forest has forest management 
plan and in the process of signing forest management agreement with 
the County Government of Taita Taveta, the forest being under County 
Government. This forest management plan provides for rehabilitation, 
tree nursery development and seedlings production as means for 
providing forest products and facilitating rehabilitation of degraded 
areas in the forest, ecological monitoring, forest protection and com
munity livelihoods’ enhancement. Ngangao forest on the other hand, 
lacks forest management plan and therefore efforts be made to prepare 
one. Where it is practiced, PFM has ensured high forest quality and 
species richness (Matiku et al., 2012). However, without sufficient ed
ucation and awareness, the forest adjacent communities may misinter
pret PFM to mean free and unlimited access into the forest to extract 
forest resources (Matiku et al., 2013). We recommend that Vuria forest 
adjacent communities be supported to implement their forest manage
ment plan and Ngangao to formulate forest management plan. 

Alternative funding mechanisms for the implementation of PFM need to 
be devised so that it is less burdensome to participating forest adjacent 
communities. 

6. Conclusion 

This study aimed to; determine the current spatial distribution of 
Taita Apalis and Taita Thrush in Ngangao and Vuria forests of the Taita 
Hills using MaxEnt model; to examine which and how ecogeographical 
factors influence the habitat suitability of Taita Apalis and Taita Thrush; 
and create maps of the predicted occurrences of the two studied species. 
Ecogeographical explanatory variables; climatic, remote sensing-, 
LiDAR-, topography- and landscape-based variables were used in the 
modelling, and separate models produced. The outcomes demonstrated 
that maximum entropy modelling, implemented through MaxEnt was an 
efficient method in generating meaningful results albeit the small sam
ple size of species occurrence data. Variables related to vegetation 
characteristics greatly influenced Taita Apalis presence in both Ngangao 
and Vuria forests, whereas topographical factors were the major de
terminants of Taita Thrush presence in Ngangao forest. The proportion 
of the two forests predicted as suitable for the activities of the two 
species was less than 7%. This study therefore proposes habitat expan
sion through reforesting open and degraded sites next to areas predicted 
as highly suitable for the two species and establishment of agroforestry 
belts based on indigenous trees on the boundaries of the two forests to 
reduce grazing and firewood collection pressure; and to enhance forest 
protection through Participatory Forest Management. In future, 
comparative studies could be undertaken utilizing additional explana
tory variables to be able to evaluate how Taita Apalis would respond to 
various environmental factors in Ngangao and Vuria and Taita Thrush in 
Ngangao and Mbololo forests. Models should be extrapolated to the 
other cloud forest fragments in Taita Hills to extend knowledge to find 
suitable habitats for these two critically endangered species. Future 
studies should also incorporate climate change variables into species 
distribution models as Taita Apalis and Taita Thrush populations in 
Taita Hills will likely decline or even become extinct due to climate 
change related habitat loss. 
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Schäfer, Rami Piiroinen and Tuure Takala for assistance in preprocess
ing the LIDAR and imaging spectroscopy data. We thank the Journal 
Editor and the comments by the two anonymous reviewers are also 
highly appreciated. 

Appendix A 

See Tables A1 to A8. 

Table A1 
Training and testing area under the curve (AUC) values for 10 random model 
runs for Taita Apalis model 1 in Ngangao forest.  

Species Prediction Model Training AUC Test AUC 

Taita Apalis model run 1  0.7671  0.7924 
Taita Apalis model run 2  0.8152  0.7793 
Taita Apalis model run 3  0.8023  0.7418 
Taita Apalis model run 4  0.8065  0.7512 
Taita Apalis model run 5  0.7978  0.8384 
Taita Apalis model run 6  0.7762  0.8172 
Taita Apalis model run 7  0.7839  0.6839 
Taita Apalis model run 8  0.7527  0.7458 
Taita Apalis model run 9  0.8244  0.9177 
Taita Apalis model run 10  0.8873  0.7893 
Taita Apalis (average)  0.8013  0.7857  

Table A2 
Training and testing area under the curve (AUC) values for 10 random model 
runs for Taita Apalis model 2 in Ngangao forest.  

Species Prediction Model Training AUC Test AUC 

Taita Apalis model run 1  0.9198  0.8033 
Taita Apalis model run 2  0.9147  0.8961 
Taita Apalis model run 3  0.9504  0.7587 
Taita Apalis model run 4  0.9282  0.8017 
Taita Apalis model run 5  0.8901  0.9089 
Taita Apalis model run 6  0.8994  0.9295 
Taita Apalis model run 7  0.8977  0.5965 
Taita Apalis model run 8  0.9460  0.6886 
Taita Apalis model run 9  0.9825  0.9138 
Taita Apalis model run 10  0.9091  0.7922 
Taita Apalis (average)  0.9238  0.8089  

Table A3 
Training and testing area under the curve (AUC) values for 10 random model 
runs for Taita Apalis model 3 in Ngangao forest.  

Species Prediction Model Training AUC Test AUC 

Taita Apalis model run 1  0.8786  0.8016 
Taita Apalis model run 2  0.7892  0.7989 
Taita Apalis model run 3  0.8393  0.7516 
Taita Apalis model run 4  0.8806  0.9193 
Taita Apalis model run 5  0.8786  0.7057 
Taita Apalis model run 6  0.7325  0.8059 
Taita Apalis model run 7  0.8505  0.8813 
Taita Apalis model run 8  0.7998  0.6609 
Taita Apalis model run 9  0.7772  0.8019 
Taita Apalis model run 10  0.7904  0.8987 
Taita Apalis (average)  0.8217  0.8026  

Table A4 
Training and testing area under the curve (AUC) values for 10 random model 
runs for Taita Apalis model 1 in Vuria forest.  

Species Prediction Model Training AUC Test AUC 

Taita Apalis model run 1  0.9398  0.9409 
Taita Apalis model run 2  0.9557  0.9659 
Taita Apalis model run 3  0.9064  0.8109 
Taita Apalis model run 4  0.9253  0.8521 
Taita Apalis model run 5  0.9119  0.9528 
Taita Apalis model run 6  0.9409  0.8568 
Taita Apalis model run 7  0.8865  0.8905 
Taita Apalis model run 8  0.8874  0.9563 
Taita Apalis model run 9  0.9094  0.7908 
Taita Apalis model run 10  0.8991  0.8003 
Taita Apalis (average)  0.9162  0.8817  

Table A5 
Training and testing area under the curve (AUC) values for 10 random model 
runs for Taita Apalis model 2 in Vuria forest.  

Species Prediction Model Training AUC Test AUC 

Taita Apalis model run 1  0.9297  0.8600 
Taita Apalis model run 2  0.9299  0.8842 
Taita Apalis model run 3  0.9150  0.8900 
Taita Apalis model run 4  0.9198  0.9326 
Taita Apalis model run 5  0.9592  0.9180 
Taita Apalis model run 6  0.9256  0.7820 
Taita Apalis model run 7  0.9339  0.9317 
Taita Apalis model run 8  0.9582  0.8707 
Taita Apalis model run 9  0.9525  0.9027 
Taita Apalis model run 10  0.9270  0.9250 
Taita Apalis (average)  0.9351  0.8897  

Table A6 
Training and testing area under the curve (AUC) values for 10 random model 
runs for Taita Thrush model 1 in Ngangao forest.  

Species Prediction Model Training AUC Test AUC 

Taita Thrush model run 1  0.8441  0.6902 
Taita Thrush model run 2  0.8662  0.7154 
Taita Thrush model run 3  0.8824  0.7562 
Taita Thrush model run 4  0.8237  0.9207 
Taita Thrush model run 5  0.8131  0.9046 
Taita Thrush model run 6  0.8832  0.6608 
Taita Thrush model run 7  0.7838  0.6100 
Taita Thrush model run 8  0.8046  0.8138 
Taita Thrush model run 9  0.7956  0.6699 
Taita Thrush model run 10  0.7911  0.8181 
Taita Thrush (average)  0.8288  0.7560  

Table A7 
Training and testing area under the curve (AUC) values for 10 random model 
runs for Taita Thrush model 2 in Ngangao forest.  

Species Prediction Model Training AUC Test AUC 

Taita Thrush model run 1  0.9034  0.8780 
Taita Thrush model run 2  0.8650  0.8689 
Taita Thrush model run 3  0.9177  0.8663 
Taita Thrush model run 4  0.8715  0.6320 
Taita Thrush model run 5  0.8990  0.7678 
Taita Thrush model run 6  0.9201  0.7087 
Taita Thrush model run 7  0.9103  0.6118 
Taita Thrush model run 8  0.8276  0.7562 
Taita Thrush model run 9  0.8764  0.6952 
Taita Thrush model run 10  0.9140  0.7618 
Taita Thrush (average)  0.8905  0.7547  
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Table A8 
Training and testing area under the curve (AUC) values for 10 random model 
runs for Taita Thrush model 3 in Ngangao forest.  

Species Prediction Model Training AUC Test AUC 

Taita Thrush model run 1  0.8277  0.7041 
Taita Thrush model run 2  0.7979  0.7722 
Taita Thrush model run 3  0.7798  0.7341 
Taita Thrush model run 4  0.8265  0.7164 
Taita Thrush model run 5  0.7932  0.7789 
Taita Thrush model run 6  0.8997  0.9211 
Taita Thrush model run 7  0.8663  0.8411 
Taita Thrush model run 8  0.8313  0.8808 
Taita Thrush model run 9  0.7616  0.6610 
Taita Thrush model run 10  0.8144  0.8187 
Taita Thrush (average)  0.8198  0.7828  
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