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ABSTRACT 

Equipment selection is key activity in mining operation because it accounts to more than 60% 

of total operation cost. When selection of equipment is not properly done it results into over-

trucking or under-trucking. Under-trucking reduces loader utilisation which leads to waiting 

times for the loader while over-trucking reduces trucks utilisation which leads to trucks queue 

at the loader. The waiting times decreases the overall productivity of the haulage operations 

resulting into increased shovel-truck unit production cost, making the system more expensive.  

This research study was carried out in a limestone open pit mine at Mombasa Cement Limited 

(Vipingo plant) Kenya using queuing theory technique to study and optimize the haulage 

system. A multichannel queuing model (M1/M2/S/n: FCFS) was developed to capture the 

activities and predict the behaviour of the haulage system from loading at the shovel to 

dumping at the crusher and back at the loading points.  

The trucks inter-arrival time (min), service time (min), number of loaders, the truck capacities, 

and the current number of trucks in the system were recorded. This data was analysed based 

on the assumptions of a multichannel queuing approach with negative exponential inter-arrival 

time and negative exponential service time. The model was developed in Mat-lab software and 

used to calculate the inter-arrival rate and service rate for the different number of trucks 

subjected to the same queuing system. The current system gave an inter-arrival rate of 12 

trucks/hour and service rate of 10 trucks/hour with 16 trucks and 2 servers in the system. Upon 

subjecting the data to the optimisation model, the results showed that when the number of 

trucks increased, the productivity of the shovel increased up to an optimal point after which, a 
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further increase in the number of trucks reduced the truck productivity hence increasing cost 

per tonne hauled. The result indicated that the optimal fleet size was 12 trucks with 2 servers 

in operation and thus the 4 trucks could be sold or parked only to be used upon breakdown. 
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1 INTRODUCTION 

1.1 Background Information 

Surface mining is the most practiced mining method carried out across the mining world 

(Meredith , 2013). In surface mining, there are mainly five stages which include prospecting, 

exploration, development, exploitation, and reclamation. Surface mining methods can either 

be open-pit mining, open cast mining, strip mining, dredging, and mountaintop-removal. The 

open-pit production operation accounts for more than 60% of all surface production (Hartman 

& Mutmansky, 2002). The production operation in open-pit mining involves a series of 

activities from loading, travelling loaded, manoeuvring at the dump, dumping, and travelling 

back to the loader. When and how to carry out these activities is subject to the decision made 

by the mining engineer or planer (Zeng, 2018). Figure 1.1 shows the share of mining 

technologies on the amount of mining production carried out around the world (Drebenstedt, 

2018). 

 

Figure 1.1: Share of mining technologies based on the world mining production 
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Loading and haulage are the major activities for mining transport scheme and they are 

commonly carried out using shovels and trucks system. The system is designed in line with the 

short and long -term production goals of the company. The design includes equipment selection 

to match the fleet size and loaders to get optimal equipment combination (Fisonga & Mutambo, 

2017). The process of equipment selection is an optimisation procedure that involves 

determining the fleet size that has an overall minimum haulage cost and increased equipment 

utilisation (Nouri Qarahasanlou, Ataei, Khalokakaie, Fatoorachi, & Barabady, 2019). 

Occasionally, waiting times are experienced at loading and dumping points. The waiting times 

at these stations reduce the capacity of operation and hence increases the unit cost per material 

hauled. It is evident that the waiting times occur when there is over-trucking or under-trucking. 

The system over-tucking increases loader utilisation but reduces truck utilisation; while under-

trucking reduces shovel utilisation and thus reducing productivity. For example, over-trucking 

leads to a decrease in truck productivity while the production of the shovel will increase until 

the service rate is optimal (Hai, 2016). The estimation of these waiting times is fundamental 

since the goal of mining operations is to deliver material that meets the company’s production 

target at a reduced cost. This estimation is aided by operation research like simulation or 

queuing technique. The implementation of these techniques, together with the performance 

calculators of trucks and shovels is an essential tool in the process of equipment selection and 

monitoring of daily production targets.  

Queuing theory is an approach of providing service for random increasing demand while 

predicting the behaviour of the system. The approach gives a good method of estimating the 

waiting times in a haulage system because it is computationally fast, and quite simple to 
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formulate as compared to simulation approaches (Meredith, 2013). In some cases, calculation 

using queuing approach can substitute simulation because it gives analysis in a short time and 

at a low cost. Taking into consideration the truck dispatching where the forward estimation of 

waiting times is vital information for the dispatcher, it provides the best and the only way quick 

enough to provide information (Elbrond, 1979). This research focuses on the queuing model 

that can be used during the calculation of shovel productivity as well as fleet production 

performance for open-pit mines.  

1.2 Motivation of the Study 

The demand for raw materials is quite high in the world. The fact is that high-grade ores are 

being depleted, and thus companies are going for low-grade ore deposits. This has led to large 

volumes of material being hauled to the processing plant for processing to get quantity of 

mineral that satisfies the market demand. The haulage of a big volume of the material to the 

processing plant has led to a big fleet size operation and thus proper equipment selection is 

necessary to reduce waiting times that increase unit production cost. This research focuses 

more on limestone quarry haulage systems in cement companies. The aim is to devise a model 

based on queuing theory technique to evaluate the behaviour of haulage systems to achieve 

optimal production targets at a reduced cost. 

1.3 Study Justification 

According to (Darling, 2011), haulage and loading costs contribute to 63% of the total 

production cost for any mine. This means that optimising haulage will lead into a cheaper and 

more efficient mining practice. Some companies have several loading points where they source 
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the material. These loading points represent service points and for this case, more than one 

loader is needed. When the system involves more than one loader its complex and the fleet size 

needs to be defined well to reduce waiting times. To extract material from the surface entails 

several operations that yield significant cost implications. Among the activities, haulage has 

proved to be more costly, which takes a significant share of the operation cost as in Figure 1.2 

(Darling, 2011).  

 

Figure 1.2: Cost Implications for Mining  

1.4 Problem Statement 

In open-pit mining, there are waiting times which are experienced at loading and dumping 

points due to poor equipment selection. Poor equipment selection results when there is over-

trucking or under-trucking. This leads to reduction in the overall productivity of the haulage 

operations resulting in increased shovel-truck unit production cost hence making the system 

more expensive.  
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 5  

   

 

Previous studies have been carried out to address the challenge of increased unit production 

cost as a result of waiting times through various approaches such as bunching theory, matching 

factor, queuing theory, and simulation. However, bunching and matching approaches have 

several limitations as they only take into account the compatibility and number of the 

shovels/trucks while ignoring the production requirement (Hai, 2016). This has consequently 

limited the success of these approaches since their output does not guarantee optimal fleet size 

for the given production target. On the other hand, simulation is complex, costly, and time 

consuming where good decision-making is needed in a short time. 

This research undertakes an investigative study to optimise shovel-truck production system 

using the queuing approach by developing a queuing model which is capable of reducing 

waiting times to increase equipment utilisation. The approach gives a better method of 

estimating the waiting times in a haulage system because of its calculation speed, low cost, and 

simplicity as compared to simulation. 

Based on recent research done using queuing theory, this study develops a multichannel 

queuing model that is capable of carrying out backward and forward optimisation based on the 

existing system traffic congestion. Backward optimisation is optimisation of over-trucked 

system by removing truck by truck until an optimal fleet size is obtained. The forward 

optimisation is carried out in an under-trucked system by adding truck by truck until an optimal 

fleet size is obtained. 



 

 6  

   

 

1.5 Objectives  

The general objective of this study was to optimise shovel-truck (S-T) production in open pit 

mining operations using the queuing approach.  

The study sought to achieve the following specific objectives: 

1. To determine appropriate S-T haulage operation parameters; 

2. To develop S-T operation model using queuing theory; 

3. To determine optimal fleet size. 

1.6 Overview of the Study 

This research focuses on the application of the queuing theory to optimise shovel-truck haulage 

operation in open-pit mining. The system is analysed through a queuing model, which 

determines the utilisation and the fleet size. The optimal fleet size is a measure that can be used 

to determine the production capacity from the truck volume capacities. 
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2 LITERATURE REVIEW 

2.1 Introduction 

The mining companies are rapidly exploiting materials which are near the surface and also 

those within the suitable vicinity. This means that the future mines will be very deeper, and 

happening in extreme areas. This will leads to increased capital of operations due to large fleet 

size that will be required to load and haul the materials. 

Intensive work carried out in loading and haulage operations incur high operation costs 

therefore, it is necessary to have a well-defined system that gives optimal material production. 

There are different ways of conducting material movement; but the commonly used one is the 

shovel-truck system due to its flexibility to changing dynamics of mining activities (Que, 

2016). Loaders are of different types, including electric rope, hydraulic excavators, and front-

end loaders (Erçelebi & Kirmanli, 2018). Figure 2.1 illustrates these types as they differ mostly 

in terms of availability of equipment, mode maintenance needed, and compatibility with 

different truck types (Caccetta, 2018), the loader volume capacity, and the cost per unit 

production (Mikhailov, 2017). These different characteristics affect the overall possible 

utilisation of the loading equipment and the utilisation of the trucking fleet  (Burt & Caccetta, 

2014).  
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Figure 2.1: Excavating equipment (a) hydraulic shovel, (b) rope shovel and (c) front-end 

loader 

2.2 Equipment Selection  

The current hard economic situation reflects in all industries while the mining industry is 

growing towards cleaner and safer working environments, increased productivity, lower 

labour, and reduced energy costs. The cost incurred during these operations can be reduced by 

optimising the current system or by introducing a new one. The transition from an operational 

haulage system to a different one is complicated task that needs profound investigation  

(Mahieu, 2017 ). The investigation include real testing of new haulage systems in running 

mining operation which is time consuming with high cost impacts and more so affects the 

current production.  

Equipment selection in open-pit mining is critical in mine planning, and it has a great impact 

on the economic viability of operations. The purpose of equipment selection is to come up with 

optimum equipment with minimum cost while maximising production (Burt & Caccetta, 

2014). There are several techniques used in equipment selection and the basic flow of each 

technique follows the simple procedure illustrated in the flow chart Figure 2.2  (Burt, 2008). 
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Figure 2.2: Basic Heuristic Equipment Selection Technique 

The methods of equipment selection differ on the assumptions and type of constraints that are 

included in the model resulting in different success rates. The methods with high accuracy are 

expensive and this results in one of the biggest challenges to small companies with low income 

to purchase the expensive software. These methods include heuristic, statistical, artificial 

intelligence, and optimisation techniques. 

Heuristic methods are primarily used for learning or discovery and don’t guarantee optimal 

solution but are sufficient for immediate goals. Mostly, they are employed where the process 

of obtaining an optimal solution is impossible or impractical. An example of the heuristic 

method is the match factor which can give the number of trucks, but it does not guarantee the 

optimal number of trucks that can meet the production target. The match factor has been used 

as a means of determining the appropriate fleet size (Burt & Caccetta, 2014); however, 

selecting the best equipment types must be performed by an expert before applying the formula.  

Mining method selection 

 
Select specific loader type  

 

Select best truck type 

 

Equipment Matching 

Determine fleet size 
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Statistical methods summarise data from a sample using indexes such as mean, standard 

deviation and, inferential statistics to draw conclusion from data that is subject to random 

variation. A multiple linear regression model was developed at around 1999 to estimate the 

important equipment selection parameters that display great variation, such as truck cycle time, 

tyre consumption, fuel consumption, and truck operating hours. The model argued that these 

parameters are usually estimated via simulation with questionable results due to variations in 

truck power and load carried. These parameters can then be used to determine an appropriate 

fleet of trucks and loaders using the simple match factor heuristic approach. This method relies 

on the existence of large data sets for the appropriate parameters for the mine in question (Hai, 

2016).  

Artificial intelligence is among the commonly used approaches in shovel-truck operations due 

to its ability to get feasible solutions within the shortest time possible. There are three common 

approaches to artificial intelligence, which includes expert system, decision support system, 

and genetic algorithms. The most common methods in the literature are the expert system and 

decision support system methods (Soofastaei, Aminossadati, Kizil & Knights, 2016).  

Samanta, Bandopadhyay, and  Ganguli studied equipment selection based on the expert 

system. In their research, they determined key factors in the equipment selection model and 

concluded that the parameter to include in the model would depend on the soil and mining 

conditions. They also found that the analytical hierarchy process is a decision support system, 

and it puts into consideration all aspects of equipment selection including geological condition 

and equipment matching. Naoum and Haidar developed a model of equipment selection 

problems using a genetic algorithm. The model only worked for homogenous fleet type, and 
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the loader was to be selected before the optimization process is started. The key assumption of 

the model was that equipment were to be used from purchase until they were completely worn 

out (Hai, 2016). 

Simulation has proven to be the most powerful tool for the mining industry and commonly 

stochastic simulation (Mauti, 2016). Some of the known simulation tools for mining are 

Talpac, Arena, Fleet production cost, Monte Carlo simulator, and others. When using 

stochastic simulation techniques like Monte Carlo simulation for equipment selection, the 

simulated model creates probability distributions from stochastic variables based on the cycle 

time data collected. Shi used simulation to predict production for earth movement and also the 

interaction of particular equipment (Meredith , 2013). 

Optimisation techniques are widely applied in mining operations. Integer programs have been 

used to create mining schedules and for pit optimisation (Mai, Topal, & Erten, 2016). However, 

for equipment selection, much of the focus is on project completion and dispatching or 

allocation (Erçelebi & Kirmanli, 2018).  

Temeng, Otuonye, and Frendewey developed a real-time dispatching process through a 

transportation algorithm integrated with a goal programming model. The model considered 

both the production rate and the ore grade in the objective function to optimise the total 

production. Considering different haul routes between a source and a destination, the routes 

that have the shortest cycle time was selected, to maximize production at each haul route. Then, 

shovels were assigned to haul routes to minimize each route’s cumulative deviation of 
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production from the optimal target production. In the last stage, using the transportation model, 

trucks are assigned to the shovels to minimise the total waiting time for both (Hai, 2016). 

Some optimisation methods look at optimising productivity and equipment matching 

(Caccetta, 2018). Queuing approach is one of those methods used in optimisation by evaluating 

the current system behaviour and giving the basis for decision making on the efficiency of the 

system. The approach determines the number of trucks in the fleet that can be operated to meet 

production targets and at a minimal cost. To determine the number of trucks, the specific 

throughput of the loaders has to be known first before applying queuing technique. The queuing 

approach has been used in haulage operation in mining with success by different research as 

discussed in section 2.4.4. 

2.3 Shovel- Truck Productivity Study 

In surface mining operations there is always a set production target for the processing plant in 

a specific period. Time is an important parameter when determining the productivity of the 

shovel-truck system. The set target has to equal production from the haulage system to ensure 

that the downstream operations are not affected. The shovel-truck productivity study for this 

research is more focusing on the application of queuing theory in haulage operation as an 

optimisation technique. 

It is quite important to distinguish between production and productivity in their nature because 

there is a difference in achieving the set production target and operating efficiently. Production 

in mining is termed as the total tonnes of material loaded and hauled while productivity in 

mining is the rate at which production is carried, usually given in per unit time, per unit of 
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capacity, per unit of expense, per machine (Hardy, 2007). The key parameter in shovel-truck 

productivity is the number of trips the truck can make per shift. The trips are determined by 

the cycle time because several parameters of haulage can be incorporated in cycle time. 

The truck cycle time comprises of the load time, travel when loaded, dump time at the 

dumpsites, return when empty, queuing, and spotting times. The cycle begins at the loader 

when the truck is loaded. The dumpsites include the crusher, stockpile, or even waste dumps 

with the act of manoeuvring at the loader or the dumpsite termed as spotting (Morley, Joseph, 

& Lu, 2013). The cycle time is crucial parameter in truck production analysis as it can 

incorporate many parameters related to it. If the need to include the intimate details of the mine 

arises, such as topography and rolling resistance in the modelling process, these parameters are 

estimated in form of time before modelling and incorporated in the truck cycle time. 

Also, truck cycle time can be used to estimate other parameters such as rim-pull, haul grade, 

and haul distance into it. Furthermore, the level of truck queuing at the loader depends on the 

fleet size, and this makes it difficult to accurately determine the truck cycle time before fleet 

size determination (Burt & Caccetta, 2014). Figure 2.3 simply illustrates the basic haulage 

cycle but the parameters indicated are not the only influencing factors for truck cycle time 

(Soofastaei, Aminossadati, Kizil & Knights, 2016). 
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Figure 2.3: S-T Unit Operation Cycle 

It is difficult to predict the cycle time of a fleet with different types of trucks (a heterogeneous 

fleet) or loaders. This is because the actual cycle time of trucks and loaders can vary 

significantly with the accompanying fleet without any changes to the fleet type. For the 

heterogeneous fleet type, the individual truck cycle time is measured in the field and the mean 

cycle time is calculated (Burt, 2008). 

2.4 Determination of Shovel-truck productivity  

The shovel-truck productivity research focuses mainly on estimating and optimising the 

productivity of the loader and truck fleet based on the notion that improving productivity will 

lead to cost reduction. This approach of optimising productivity can be developed to act as an 

equipment selection technique with the key target being to determine the fleet size needed to 

achieve a certain material production target at minimal cost (Burt, 2008). The simplest method 
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of determining the number of trucks in a fleet, N based on productivity is given in the Equation 

2.1 (Burt, 2008) as: 

N =
𝐻𝑜𝑢𝑟𝑙𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝐻𝑜𝑢𝑟𝑙𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑡𝑟𝑢𝑐𝑘
                                                                           (2.1) 

In production optimisation, there are several methods that have proven to be critical as seen in 

previous research conducted. They include matching, bunching, and queuing approaches.  

 Matching Factor Approach 

Matching factor (MF) is a vital productivity index in the mining industry. This is because the 

factor gives the measure of the productivity of the fleet, with the ratio been used to match the 

truck arrival rate to loader service rate. This ratio isolates itself from equipment capacities, and 

potential productivity, by including only the loading times in the truck cycle times. Equation 

2.2 gives a mathematical expression of the match factor and its parameters. 

MF =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘𝑠 × 𝑙𝑜𝑎𝑑𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑎𝑑𝑒𝑟𝑠 × 𝑡𝑟𝑢𝑐𝑘 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
=

𝑡𝑟𝑢𝑐𝑘 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

𝑙𝑜𝑎𝑑𝑒𝑟 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑎𝑡𝑒
                                 (2.2)                   

The cycle time in the equation above does not include waiting times at the loading area. Ideally, 

the best match of equipment selection is 1 as shown in Figure 2.4. The MF below 1.0 shows 

under-trucking while the MF above 1.0 shows over-trucking and therefore, MF controls the 

shovel utilisation and minimises differences in productivity (Burt & Caccetta, 2014)  . Hence 

assigning the correct number of trucks to the shovel results in optimised productivity and 

performances of the S-T system. Optimisation is done by improving truck cycle time while the 

loader idle time is eradicated or minimised. 
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Though, claims that the system operation with low MF is inefficient such claims must be 

interpreted carefully. These claims meant that fleets with a low MF can be cheap and cannot 

meet the production target of the operation. The use of the word efficient is usually used strictly 

in showing the ability of the trucks and loaders to work to their optimal capacity. When the 

MF is used to determine the suitability of the selected fleet, one ought to understand that the 

minimum cost fleet may not be considered ideal for a mining operation, as this corresponds to 

optimal production capacity. This means that, loader at 50% capacity may be significantly 

cheaper to run than that loader operating at 100% capacity in the same conditions. Finally, this 

approach should not be used as a sole measure of the efficiency for the S-T system, and thus 

its result should be counter-checked with other known methods to evaluate its validity 

(Choudhary, 2015). 

Figure 2.4: Combination of Relative Efficiencies of Truck and Loader  
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 Bunching Theory 

Bunching mostly occurs when the system does not allow overtaking and the fastest trucks in a 

fleet catch up with the slowest truck along the haul route and in such a way that all will be 

forced to move with the speed of the slowest truck. Bunching is known to reduce optimal fleet 

operation by reducing equipment utilisation. The relationship of bunching effect in loaders and 

its fleet size is not complicated as that in buses and passengers (Al-Zwainy, & Hadhal, 2016). 

When trucks have bunched behind the slower truck, the time shifts towards the slower truck. 

Literature reviews show that when there is a perfect match between a loader and trucks, the 

bunching effect is 20 to 30 % less (Burt, 2008). According to (Lashgari, Yazdani, & Sayadi, 

2010) replacing the old fleet with a new fleet instead of adding a new truck to the existing 

system minimises the bunching effect since there is always available truck to be loaded with 

inter-arrival times being slightly constant. 

2.5 Queuing Theory 

The theory of queuing started early 19th century when it was first used to model telephone calls 

traffic. In the telephone traffic, randomly arising calls would arrive and be handled by the 

switchboard with a finite maximum capacity (Torkamani, & Askari-Nasab, 2015). There is a 

frequent waiting queue in most service locations, either bank, hospitals, government agencies, 

or even post offices. Variable arrival and service rates in the systems lead to regular waiting 

queues, and models have to be developed to predict these queues length for better service 

decision making. This thesis study investigates the optimization of the truck-shovel system, 

and in the study, customers are trucks, and servers are the shovels. 
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 Queuing Model Element and Characteristics   

Major components when modelling a cyclic waiting-line system are, calling population, 

arrival, waiting line, processing order, service, and leaving the system as illustrated in Figure 

2.5 (Lin, Wang & Sadek , 2014).  

 

Figure 2.5: Major Components of a Waiting-Line System  

2.5.1.1 Calling Truck Population  

In queuing a calling population is termed as set of customers likely to arrival in to the system 

for the service. The population can be finite or infinite. The calling population is termed as 

infinite when the source is big enough. In this case, the probability of arrival cannot be changed 

mainly by the fact that there is other customers waiting for the service.  In a case, where a 

system has limited access to service, and there is a limited number of customers to be served 

this population is termed finite. In this situation the number of customers waiting for services 

influence the probability of another arrival to decrease as a result of percentage decrease in 

population. In this study, the truck's population is said to be finite because the number of trucks 

expected in the system is known. 
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2.5.1.2 Truck Inter-arrival 

The truck's inter-arrival in the queuing system is stochastic because the inter-arrival time is not 

constant. The inter-arrival time keep of changing with changing dynamic including breakdown, 

driver efficiency, truck age (Meredith , 2013). The assumption made here is that once the trucks 

enter the queue they wait until and when served to leave the system. Another assumption that 

is related to truck inter-arrival is the inter-arrival rate variability, which follows a negative 

exponential distribution, as shown in Figure 2.6  (Lin, Wang & Sadek , 2014). 

   

Figure 2.6: Inter-Arrival Time Distribution Curve 

2.5.1.3 Waiting Line 

The waiting line is also called the service distribution. This step consists of trucks that have 

already signed into the system and waiting for service. When modelling, the assumption made 

is that once the truck has been booked into the system, it can only leave once it has been served. 
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2.5.1.4 Processing Order 

The processing order is also referred to as the discipline of service to the trucks. The discipline 

of service in the queuing model to be developed is First Come First Served (FCFS). 

2.5.1.5 Service Stations 

The critical aspect is the number of shovels present and their service capacity because this is 

what is used to determine system fleet size. The service can have one shovel (single channel) 

or even multiple channels, and the service can have one or a few steps that are handled together 

referred to as a single phase. The most common assumption made is that the service time can 

also be denoted by an Erlang distribution, as seen in Figure 2.7  (Lin, Wang & Sadek , 2014). 

 

Figure 2.7: System Service Time Distribution 

2.5.1.6 Leaving the System 

Leaving the system is the last activity a truck does when served. In this research, the truck can 

only leave if it has been served. 
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 Queuing Model Classification in Mining 

Mining operations experience queue mostly in the haulage, dumping, and loading when trucks 

are poised to wait in the line for their turn to get served.  Figure 2.8 represents the typical 

mining operation in the queuing system (Meredith , 2013). 

 

Figure 2.8: Shovel-Truck queuing system  

The queuing model can be classified mainly into two: single-channel model and multiple-

channel model as shown in the Figure 2.9. The single-channel model is where we have one 

loader while multiple channel model is where we have more than one loader. 

 

 

 

 

Figure 2.9: Queuing model classification 

Queuing model 

Single-channel model (M1/M2/1) 

 

Multiple- channel model 

(M1/M2/S) 
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In cyclic queuing where there is a continuous repetition of similar events in the system the 

operations can be represented as in Figure 2.10. The haulage route can be subdivided into four 

main parts: the loader, haul route when loaded, crusher, and haul route when unloaded. Figure 

2.11 also represents a single-channel queuing system with only loader or shovel (Meredith , 

2013). 

 

Figure 2.10: Shovel-Truck cyclic queuing system  

In some mine operations, the high demand for the materials lead to multi-server being used, 

and hence the cyclic system can be twisted to fit queuing system with multiple servers. The 

queuing system here with multiple servers is hereby assumed that the loaders are arranged in 

parallel as shown in Figure 2.11 (Meredith , 2013). This arrangement can also be called a 

multiple-channel system. 
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Figure 2.11: Shovel-Truck cyclic queuing system with parallel servers  

2.6 Queuing Approach in Mining 

The queuing theory was first applied in a mining operation by Koenigsberg. The study 

modelled conventional, mechanised room and pillar mining operations for closed-loop queuing 

systems. It considering a finite number of customers based on the assumption of exponential 

service time distributions. The mining system was deemed to have a set of specialised machines 

that were working in succession on a series of active mine faces. The entities involved in the 

cycle were a cutting machine, drilling jumbo, blasting crew, loading machine group, and a roof 

bolting machine. Each machine was made to proceed to the next face when done with its task. 

The study also explained that queuing theory notation of the equipment operation cycle has a 

closed queue with N customers being served in order of arrival from P machines. After the Pth 

stage, the customer (mine face) is in contention for service for the next machine operation. 

Figure 2.12 illustrate the basic sequence of operation of equipment where the faces serve as 
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customers and the equipment status is shown by 1, 2, 3, 4, and 5 (Torkamani, & Askari-Nasab, 

2015). 

 

Figure 2.12: Typical mine layout with 1-2-3-4-5 showing equipment operation sequence  

The research came with formulas that were used to determine the probability of the equipment 

system in a specific state, the mean of the equipment waiting for service at a particular stage. 

It also calculated the delays experienced at that stage, mean cycle time, the probability that 

stage can be idle and daily output. These equations can be modified for different numbers of 

servers and customers to compare different machine configurations. The outcome of the study 

found that output increase as the number of working location were increased while the overall 

output was limited by the service rate of the slowest machine (Hai, 2016).  

Although simulation was common around the 1960s, the queuing approach grew in demand 

since computer simulation by then needed a computer memory and CPU time, which by then 

were costly and time-consuming. Analytical modelling approaches like queuing theory with 

little or no computing requirement become a viable alternative to computer simulation models 
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(Meredith , 2013). Using queuing theory, it also predicted the production loss as a result of the 

queue of the trucks at the loader as well as the productivity of different truck fleets (Hai, 2016). 

Queuing techniques can be adopted in both civil engineering earth-moving projects and open-

pit mining in haulage operations as the haulage operations follow similar technique. Maher and 

Cabrera applied the closed-loop queuing approach in finding the optimum number of trucks 

that were capable of minimizing the cost per unit volume of material moved. In their research, 

the haulage system was analysed to consider loading and transit time as constant or variable, 

fitting a negative exponential distribution. After data analysis, the model came with graphical 

charts for choosing the best cost-effective number of trucks based on the ratio of loading time 

and haulage time and the ratio of the loader and the truck operating costs (Hai, 2016). 

Jorgen Elbrond, developed a more direct calculation technique based on queuing theory. His 

model acted as an alternative to computer simulation for assessing open-pit transport operation 

capacity, and the approach was based on the queuing theory formula for waiting time in a 

closed operation where the research also added correcting factors due to the varying times of 

loading, travels, and dumping. Waiting times were calculated as a function of the number of 

trucks in operation by averaging the results found through simulations for three different cases: 

(a) constant travel time and constant service time, (b) exponentially distributed travel time and 

exponentially distributed service time, and (c) exponentially distributed travel time and 

constant service time. The correction factors combining theoretical and simulated cases were 

calculated using an interpolation procedure while other essential data to the truck haul cycle 

like dumping time and shift data was found using time studies. After developing the model, 

time measurement made at Hamersley Iron indicated a correlation coefficient of 0.865 between 
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the observed and calculated wait time at the loader. This proved that the model developed was 

accurate for haulage systems (Meredith , 2013) 

Karshenas modified the queuing approach, where he made several improvements that were 

incorporated into equipment selection criteria. The model used interval time in one truck and 

not interval in the whole truck fleet but, due to the nature of the model, it was restricted to 

homogenous fleets because the model required the times between the arrivals (Meredith , 

2013). However, the work continued in the attempt to a develop model for selecting the truck 

fleet size by using a better accurate productivity estimate to minimise the cost of the idle 

equipment. The fleet model was M1/M2/S/FIFO/t1/t2, where M1 and M2 showed the customer 

arrival rate and service rate exponential distribution. S indicated the number of servers that 

were termed to be parallel, and the discipline of service was First-In-First-Out with the upper 

bound of customer allowed to be t1, while the t2 been the maximum number of potential 

customers. The model showed that a selection of fleet sizes that match the maximum efficiency 

for both loading points and haulage equipment should be adopted. Although it was 

questionable whether such a method would improve the economic result, the results proved to 

be useful considering the degree of variability of some of the parameters of the equipment 

selection process like truck cycle time and queue length (Hai, 2016). 

A queuing computer model was developed that captured values like server utilisation that was 

used in the calculation of haulage system production. The model was called FLSELECTOR, 

and it was used in choosing the best fleet size. FLSELECTOR was coded in VBA (Visual 

Basic for Application) and Microsoft Excel. It allowed the optimum fleet to be selected based 

on the least cost and maximum production (Salem, Salah, Ibrahim, & Moselhi, 2017). 
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FLSELECTOR compared outputs achieved using different haul routes but loading and 

dumping material at a common point (Lashgari, Yazdani, & Sayadi, 2010). The charts from 

the best ten fleets can be printed and viewed in the process for a given set of data with each 

fleet size arrival rate, utilisation, cycle time, service rate, production, cost per unit been 

calculated.  

Although FLSELECTOR is limited to the fact that it can only handle a maximum of three 

loaders, and it assumes that there were no queues at the dumping point when compared to 

deterministic models it gave a small production value than the deterministic model. This was 

inconsistent with other studies that have found that deterministic models tend to overestimate 

the total production values. FLSELECTOR gave results that were closer to that of simulation 

system SIMEARTH and comparing the two systems; it showed an average difference of 14% 

(Salem, Salah, Ibrahim, & Moselhi, 2017). 

Later, queuing approach that tackled mine scheduling problems was developed by Najor and 

Hagan, and it incorporated a heuristic model based on the queuing method. This model aimed 

at ensuring fleet size matches the target production to reduce the final expenditure in the mine 

haulage system through efficient fleet management, maximising the use of the equipment, and 

minimising resources that are used to support the fleet operation. The model applied the 

queuing approach to develop a capacity-constrained model based on the truck capacity 

(Meredith , 2013). 

Najor and Hagan queuing model was developed for calculating production values and 

estimation for cost per tonne of hauled material used parameters such as expected wait time 
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and the expected number of trucks to be serviced. The model when compared to the capacity-

constrained model, and the conventional model showed that the capacity-constrained model 

offers more conservative production than the conventional approach, which leads to an 

overestimation of mining capacity. The conventional approach underestimated the mine life 

by 8% as compared to the mine life of a capacity-constrained method (Meredith , 2013). 

Machine Repair Model, which is an example of a finite source queuing model could also be 

applied in the estimation of fleet size and yielded accurate results. Based on model modified 

by Kruse and Musingwini, a dump truck is sent for loading (repair) in every cycle completed, 

and there are several loading points (repair bays). In this case, both inter-arrival time and 

service time are taken to be exponentially distributed, and the state of the system is determinant 

of arrival pattern because trucks are drawn from a finite population. The equations of the 

Machine Repair Model were adjusted to fit loading and hauling situations whereby the average 

time of the trucks on the waiting for repair becomes the average amount of time a truck can 

queue at either dumpsite or loading site (Hai, 2016). 

A closed queuing network model developed which only used one type of truck by Ercelebi and 

Bascetin. The goal of the study of the truck-shovel system was to minimise cost per material 

hauled, with a balance between the cost of the idle time of the loader (shovel) and the cost 

associated with providing new trucks with loading, hauling, and dumping times assuming 

exponential distributions. The cost prediction was done using queuing and the results were 

compared to the results obtained using linear programming. The two results indicated that 

queuing theory gave minimum loading and hauling cost for the system and also the optimal 

number of trucks assigned to the shovel (Meredith , 2013). 
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The truck and shovel behaviour in oil sands capture the nonlinear relationship between the 

average mine output and the number of dump trucks used and then developed an optimal model 

out of the relationship (Meredith , 2013). The model has two options: (1) for only a single truck 

size and (2) multiple truck sizes. The individual trucks are assigned a readiness parameter so 

that the model can display both the number of necessary truck and the truck individual which 

should be used. The truck cycle times and shovel service times were represented with an Erlang 

distribution, and the probability that the shovel is idle was linearized so that the shovel output 

is expressed as a linear function.  Information about truck utilization and idle time was not 

calculated in this model but when compared to simulation results, it is shown that the optimal 

model correctly predicted shovel utilization. It also calculated the idle time as it provided good 

worthy information on the number of trucks to be used to achieve production targets (Yadav, 

2019). 

A (M/M/1) was applied by Hai to determine the relationship between the number of trucks in 

the fleet and shovel utilisation, production, and the queue length at Cao Son coal. The model 

could be used in any haulage system if data on the arrival times of the trucks and service times 

of the shovel fit to the exponential distribution. The case study data used, which was Cao Son 

coal gave optimized fleet size with the minimum cost of operation. The results showed that 

when the number of trucks increases more trucks have to queue at the loading point leading to 

more shovel efficiency and utilisation but idle times on the trucks. However, it was realised 

that there was a limit to the number of trucks at which shovel utilisation reaches a limit, and 

adding an extra truck, a queue is evidenced. To get the optimised fleet size, the model compared 

the operating costs for the different fleet sizes in the system (Hai, 2016).  
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The fact that Hai used single channel model which involves one loader doesn’t reflect real 

situation in the current mining set-up. Most mines have more than one loader and hence multi-

channel queuing approach is required to capture the real mining reflection. Another key 

limitation of the existing queuing model is that, they only do forward optimisation. Forward 

optimisation involves starting with lowest number of truck that can be found in a practical 

haulage system. The lowest number of trucks can be equal to number of shovels present. If the 

trucks are less than the loading shovel, this system will not be practical. Then there is backward 

optimisation in queuing which is carried out if the number of trucks in the system exceed the 

loader(s) capacity. In this kind of situation the value assigned to the model is the number of 

trucks in the existing system. The model does backward calculation by eliminating truck by 

truck until optimal fleet size is achieved. In this study, the model developed can do both 

forward and backward optimisation.  

2.7 Summary  

Material handling and haulage system of ore and waste in open-pit mining has captured the 

interest of many researchers for many decades. This is because it has a significant impact on 

the operating cost of mine which is nearly half of the total cost implication. As mining goes 

deep it results in inconstant fleet size because haul road distance increases and more trucks are 

needed to meet the production target. The flexibility of the truck and shovel is critical in 

adapting to the change of depth and pit design, but the feasibility of the system needs to be 

evaluated each time to understand when and at what exact time to field extra truck(s). 
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The queuing process is a multi-step operation that starts from a population, arrival for the 

designated service, waiting for the service, then receiving the service and finally leaving. These 

processes are the typical steps that any queue can follow. The queue can be cyclic or open.  

The cyclic queue is where the customer after receiving service does not leave the queue but re-

joins. This a typical example of haulage system in mining where the truck after dumping it 

goes back to the loading point. In the open queue, the customer leaves the queue and does not 

come back. This is typical example of a banking service system where a customer after visiting 

the teller they will leave the bank. 

The queuing process is applied based on the task at hand. For example, haulage system in 

mining follow queuing modification whereby, the loaders are the servers, and the trucks are 

the customers. This research applies multichannel cyclic queuing system with parallel servers 

to develop an optimisation model as discussed in the next chapter (Chapter 3). 
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3 MODEL DESIGN AND METHODOLOGY 

3.1 Introduction 

This chapter considers model design, data collection, and data analysis. The model design 

captures the algorithm formulation of the model, the platform, and the optimisation model. The 

data collection comprises the study area, the relevant data collected, and the input parameters 

that are calculated from the data collected. The data analysis involves the clean-up of the data 

collected. The clean-up means removing the outliers and carrying out a statistical calculation 

to determine the mean value for the bulk data such as loading time and inter-arrival time.  

3.2 Model Design 

The system analysis being applied adopts the queuing approach (M1/M2/S/n) to develop a 

model; where M1/M2 represents the probability distribution of truck cycle time and probability 

distribution of service time, respectively. In the research the following assumption were made 

as in (Hai, 2016): 

 A negative exponential inter-arrival rate for the trucks; 

 A negative exponential service time for the loaders; 

 Discipline order of first come, first served (FCFS); 

 Mean service rate for all loaders (homogenous loaders); 

 Homogenous fleet type for all the servers. 
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3.3 Model Parameters 

These are the key input parameters of the model that represent the characteristic behaviour of 

the system. When executing queuing theory, the following parameters are crucial to be studied 

in order to capture the correct representative behaviour of the system, as shown in Table 3.1 

Table 3.1: Queuing Model Input Parameters 

Parameter Symbol Units Parameters Definition 

λ Trucks per hour The average arrival rate of trucks 

μ  Trucks per hour  Average service rate per loader  

S Real number Number of loaders operating in parallel 

Nx Real number Number of trucks in the system 

Nc Real number Truck capacity 

Hw Real number Working hours per day 

Ch Kenya shilling Haulage cost 

Cl Kenya shilling  Loading cost 

 Model Equations 

The haulage system comprises of loaders and trucks used in the material handling in the mine. 

The data collected in the mine is truck inter-arrival time and loader service time in a stable 

working shift. This data is used to calculate truck inter-arrival rate, λ, and loader service rate, 

μ. These parameters are used to define system utilisation, 𝜌 which is the measure of traffic 
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congestion for several loaders, r which is the system utilisation for a single loader (Meredith , 

2013) given in Equation 3.1. 

            r =
λ

μ
                                                                             (3.1) 

Thus, the service rate factor 𝜌, which is the measure of traffic congestion is expressed in 

Equation 3.2 as: 

        𝜌 =
𝑟

𝑠
=

𝜆

𝑠𝜇
                                                                                            (3.2) 

where, s is the number of shovels, 

When ρ > 1 it means that the average truck arrivals into the system exceed the average shovel 

service rate (λ > sμ). When 𝜌 < 1 it means the shovel service rate exceeds average trucks 

arrival rates. In conditions where the 1< ρ, the probability of having zero trucks in the queuing 

system, 𝑃𝑜  is expressed in Equation 3.3 (Hai, 2016) as: 

𝑃𝑜 = {∑
𝐾!

(𝐾−𝑛)!

𝑠−1
𝑛=0  𝑟𝑛 + ∑

𝐾!

(𝐾−𝑠)!𝑠!𝑠𝑛−𝑠 𝑟𝑛𝐾
𝑛−𝑠 }

−1

                                                 (3.3)             

Alternatively, the possibility of having n trucks in the system, 𝑃𝑛    is given by probability 

expression in Equation 3.4 (Hai, 2016) as:             

𝑃𝑛   = {

(K
n

)rn𝑃𝑜                                     n = 0,1 … s − 1      
 

K!

(K−n)!s!sn−s rn𝑃𝑜              n = s, s + 1 … K
            

                                 (3.4) 

K, is the fleet size and n, the number of trucks already in the haulage system. 
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It should be noted that queuing line have no definitive pattern where arrival and service rate 

are not deterministic, and therefore the probability distribution of queue length is calculated 

out of the arrival rate and the loading rate (Shortle, Thompson, Gross, & Harris, 2018). Hence 

the expected number of trucks, 𝐿𝑞  waiting to be served based on the probability, 𝑃𝑛   is 

expressed in Equation 3.5 (Trivedi, Rai & Nath, 1999) as: 

𝐿𝑞 = ∑ (𝑛 − 𝑠)𝑃𝑛
𝐾
𝑛=𝑠                                                                                           (3.5) 

The average number of trucks, Ls and the average time truck spends in the queue,Wq is 

calculated by applying Little’s formula.  Hence the expected number of trucks in the system is 

given in Equation 3.6 (Shortle et al., 2018). 

𝐿𝑠 = ∑ 𝑛 × 𝑃𝑛
𝐾
𝑛=0                                                                                                 (3.6) 

The long-term average number of units in a stable system, Ls is equal to the product of long-

term average effective arrival rate(𝜆̅)and the average time a truck spends in the system,Ws. 

The effective arrival λ ̅is given by Equation 3.7 (Hai, 2016). 

𝜆 ̅ = ∑ 𝜆(𝐾 − 𝑛)𝑃𝑛
𝐾
𝑛=0                                                                                         (3.7)          

The expected time a truck will spend in the queue is given by Equation 3.8 (Hai, 2016):  

𝑊𝑞 =
𝐿𝑞

𝜆̅
                                                                                                                 (3.8) 

Likewise, the average time a truck spends in the queuing system, 𝑊𝑠 can be expressed as in 

Equation 3.9 (Hai, 2016). 
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𝑊𝑠 =
𝐿𝑠

𝜆̅
                                                                                                                   (3.9) 

The utilisation of the shovel, ηs and the utilisation of the trucks, ηt is given in Equation 3.10 

and 3.11 respectively (Hai, 2016). 

𝜂𝑠 = 1 − 𝑃𝑜                                                                                                           (3.10)  

𝜂𝑡 = 1 −
𝑊𝑞

𝑊𝑞+𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
                                                                                                   (3.11) 

Cycle time referred in this equation is the loading time, travelling time when loaded, dumping 

time, travelling time when empty and manoeuvring time. 

 System Cost Model 

System production is the parameter of prime importance to a mining company. This is because 

the more the material delivered in the processing plant the higher the profit generated at a given 

time (Hai, 2016). The hourly system production is given as shown in Equation 3.12: 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 × 𝑠ℎ𝑜𝑣𝑒𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑎𝑡𝑒 × 𝑠ℎ𝑜𝑣𝑒𝑙 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 ×

 𝑡𝑟𝑢𝑐𝑘 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦                                                                     (3.12)                                                

The main focus of shovel-truck operation in mining is to minimise the cost of operation while 

meeting the production goals. When reducing the cost of operation, basically the decision has 

to be made in between trading-off cost of shovel idle time and the cost of adding an extra truck. 

The total hourly operation cost of the system is given by, 𝐶𝑙𝑆 + 𝐶ℎ𝑁 (Hai, 2016); where Cl is 

the cost per unit time of the shovel, and Ch is the cost per unit time of the truck. S represents 
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the number of shovels, and n, represents the number of trucks. The total cost of unit production 

can be expressed as Equation 3.13 (Hai, 2016): 

𝑇𝑜𝑡𝑎𝑙 𝑈𝑛𝑖𝑡 𝐶𝑜𝑠𝑡 =
(𝐶𝑙×𝑆)+(𝐶ℎ×𝑛)

𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
                                                                    (3.13) 

After deriving the cost model to determine unit production cost for a different number of trucks, 

the total cost is plotted against the number of trucks, and the optimum fleet size is interpolated 

from the minimum cost in the plotted graph (Meredith , 2013). 

3.4 Optimisation Steps 

The flow chart in Figure 3.1 describes the conceptual model for the algorithm code. The code 

was executed in MATLAB software with an excel spreadsheet linked to the code which acts 

as an interface for input data.  
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Figure 3.1: S-T Queuing Conceptual Model 
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The model is constituted of two main part which captures the scenario which can be found in 

S-T haulage system. The first part of the model is optimization when the truck arrival rate is 

less than the service rate. In this case, the code keeps on adding truck by truck while displaying 

the results until the optimal number of trucks is reached. The second part is the optimization 

of the system when the truck arrival rate is higher than the service rate. In this case, the model 

reduces truck by truck displaying the results until the optimal number is reached.  

It is important to note that every running model has to be bound. This enables the model to run 

for designated times and then, display results otherwise the model can run without stopping. 

The S-T haulage model designed has lower and upper limits which should be defined in excel 

input interface. The lower limit is defined by the number of loaders, while the upper limit is 

any number slightly above the fleet size present. The lower limit and upper limit can be 

readjusted based on the nature of the graph of total unit cost against the number of trucks.       

3.5 Summary 

The shovel-truck haulage operation is cyclic in nature: whereby, the truck is loaded, travel 

when loaded to the dump site, dump the material, and travel back to the loading point. These 

activities can be modified in the queuing theory to set up a shovel-truck haulage model. 

Queuing model gives results of the current system and from these results the site engineer can 

readjust the system accordingly to reduce time wastage in the operation. The key parameters 

in queuing are service rate (loading rate) of the shovels and inter-arrival rate of the trucks. The 

model is developed based on the sequence of activities as outlined in Figure 3.1. The results of 

the model give the technical description of the system whether there is under trucking or over 
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trucking in the system. A case study is the used to give data that was used in the research as 

explained in the next chapter (Chapter 4). 
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4 APPLYING QUEUING APPROACH IN SHOVEL-TRUCK 

HAULAGE SYSTEM  

4.1 Introduction 

The mining industry in Kenya is more prominent in limestone mining because of the growing 

demand for cement across the country. The growth of the cement manufacturing industry is as 

a result of faster growth of the economy hence more infrastructure is being built. There are six 

cement companies in Kenya as shown in Table 4.1. 

Table 4.1: Table of Cement Manufacturing Companies in Kenya and their Location 

Company Location  Brand  

Mombasa Cement Limited Vipingo, Kilifi County and 

Athi-River Machakos County  

Nyumba  

Athi River Mining Kaloleni- Kilifi County and 

Athi River Machakos County  

Rhino Cement  

Bamburi Cement Bamburi Mombasa County, 

Athi River Machakos County  

Bamburi Cement  

East Africa Portland Cement Athi-River Machakos County  Blue Triangle  

National Cement Athi-River-Lukenya 

Machakos County  

Simba Cement  

Savannah Cement Kitengela, Kajiado County  Savannah Cement  

Ndovu Cement Athi-River Machakos County  Ndovu Cement  
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4.2 Case Study Area 

This research was conducted at Mombasa Cement Limited (MCL) in Vipingo- Kilifi County. 

MCL is among the leading cement producers in Kenya. The Mombasa Cement Limited is set 

to increase the current clinker production capacity from 3,000 tons of clinker per day to 9,000 

tons of clinker per day and thus increasing cement production by the same ratio.  As a result, 

the company is growing rapidly and thus the haulage system. This research is devising a 

structured model that can be used for equipment selection as a way of optimising the current 

shovel-truck haulage system to reduce unnecessary operation costs from the haulage delays 

which consequently will improve the profit. 

Several data values were recorded which were used to generate input parameters for the shovel-

truck model. The recording was done between the dates 24th February 2020 to 30th February 

2020.  
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Figure 4.1: Location of Study Area (Source: ArcMap) 

The quarry had four shovels with one fitted to a breaker for breaking hard limestone material. 

The second shovel was used for reaping limestone which that is mainly weak in the coast 

region. The other two shovels used to load trucks as shown in Figure 4.2. The shovels were 

made by DOOSAN manufacturing company with a bucket capacity of 3 cubic meters. 
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Figure 4.2: 3 m3 Bucket Capacity Shovels Loading into 25 tonnes Capacity Trucks at the 

Quarry 

There were 16 trucks in operation during the period of data collection and the haulage operation 

in the company was contracted to a haulage company. The truck type was SX3255DR384 from 

SHACMAN manufacturing company. The loading (shovels) and haulage (trucks) system 

create the queuing system which is cyclic because the loaded trucks follow the same route 

travelling when loaded and when empty.  

4.3 Model Inputs 

The two variables bulk data recorded were inter-arrival time and service time which is used to 

calculate inter-arrival rate, λ and service rate, μ respectively. The inter-arrival rate is the 

number of trucks arriving per hour (trucks/hour) while service is the number of trucks served 
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per hour (trucks/hour). The data obtained for both inter-arrival time and service time is first 

cleaned up to remove the outliers. Outliers majorly occur when there is a breakdown of one of 

the trucks or bulking during operation. The outliers are determined using the following steps: 

 Step 1: Arrange data in ascending order and divide it into four quarters. 

 Step 2: Get mean for the first quarter (Q1) and third quarter (Q3). 

 Step 3: Get interquartile range (Q3-Q1). 

 Step 4: The data value is an outlier if it’s greater than Q3 + 1.5(interquartile range) or 

lower than Q1- 1.5(interquartile range). 

After data was cleaned up, the distribution fitting was done in Mat-lab software using a 

distribution fitting application. The distribution fitting application sorts’ inter-arrival time and 

service time to create data density. Data density, also called probability density function (PDF), 

uses the logic of continuous random variables. The variable integral across an interval gives 

the probability of whether the value of the variables lies within the same interval. The graphical 

relationship in Figure 4.3 and Figure 4.4 shows that both inter-arrival time and service time 

follow negative exponential-distribution. 
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Figure 4.3: Inter-arrival Time Distribution 

The service time in this research is the time when the shovel starts loading the truck until it 

fills the truck; plus the manoeuvring time while loading and the time the next truck manoeuvres 

to align for loading. The time between the filling of one truck until when the next one starts to 

load is not instant and therefore, there is a time frame that laps while the truck paves way for 

the previous one to leave so that it can manoeuvre and set for loading. This time frame in 

queuing is very vital, and once assumed it leads to over trucking. This leads to the 

underutilisation of the haulage system. 
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Figure 4.4: Service Time Distribution 

4.4 Input Parameters Calculation Process  

There are 8 parameters in the shovel-truck queuing model as shown in Table 4.2. The inter-

arrival rate is calculated from the mean inter-arrival time data while the service rate is 

calculated from mean service time data (Hai, 2016) as in Equation 4.1 and 4.2. The data 

collected from the field is attached at appendix A. 

Inter-arrival rate,  𝜆 = 
60 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑛 𝑎𝑛 ℎ𝑜𝑢𝑟)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟−𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒(𝑚𝑖𝑛)
                                              (4.1) 
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Service rate, μ = 
60 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑛 𝑎𝑛 ℎ𝑜𝑢𝑟)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛)
                                                               (4.2) 

Table 4.2: Model Input Parameters 

Inter-arrival rate, λ 24 trucks/hr 

Service rate, μ 10 trucks/hr 

Number shovels, S 2 

Number of trucks in the system, Nx 16 

Truck capacity, Nc 25 tonnes 

Working hours per day, Hw 16 (2 shifts) 

Loading cost per truck, Cl KShs 24,200 ($242) per hour 

Haulage cost per truck, Ch KShs 17,500 ($175) per hour 

* KShs (Kenya shillings) 

The input parameters are stored in an excel spreadsheet as shown in Table 4.3. The spreadsheet 

is linked to the code in MATLAB as shown in Figure 4.5. This Excel spreadsheet acts as a data 

input interface for the model. The interface takes the mean service time and inter-arrival time 

and then the model computes the service rate and inter-arrival rate. 
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Table 4.3: Excel Input Interface 

Service 

time(min) 

Inter-

arrival 

time(min) 

Haulage 

cost, 

Ct/hr 

Loading 

cost, 

Cs/hr 

Truck_start Working 

hours/day 

Number of 

shovels 

Truck 

capacity(tonne

s) 

Lower 

limit 

Upper 

limit 

6.28 2.50 17500 24200 16 16 2 25 2 30 

The code that extracts the input parameters in the excel spreadsheet reads the parameters in 

“Num” as shown in Figure 4.5. This code reads the row first and then a column in integer form 

i.e., Num (row, column). 

 

Figure 4.5: Model Code that Extracts Input Data from Excel Spreadsheet 



 

 50  

   

 

4.5 Model Output  

The model output can be termed as the performance measures of the system. These outputs are 

the probability of having zero trucks in the system, number of trucks in the queue, number of 

trucks in the system, waiting time in the queue, waiting in the system, shovel utilisation, and 

system production. The output is used by the engineer to predict the behaviour of the system 

and effect necessary changes.  Table 4.4 shows the output parameters from the model starting 

from 2 trucks to 16 trucks. The model lower boundary condition should be the number of 

shovels in operation. This is because it is not logical to have two shovels loading into one truck.  
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Table 4.4: Model Output  

K λ P0 Lq Ls Wq Ws ηs  ηt Qn Cl Ch Ct 

2 3.00 0.74677 0.00 0.27 0.00 3.14 25.32329 100.00 1935.85 40.28 29.13 69.40 

3 4.51 0.52802 0.01 0.58 0.06 3.20 47.19757 99.86 3608.03 26.85 29.13 55.98 

4 6.01 0.32611 0.08 1.02 0.27 3.41 67.38856 99.33 5151.54 20.14 29.14 49.28 

5 7.51 0.17100 0.31 1.64 0.75 3.89 82.89994 98.17 6337.31 16.13 29.16 45.28 

6 9.01 0.07228 0.85 2.50 1.61 4.75 92.77190 96.12 7091.98 13.46 29.19 42.65 

7 10.51 0.02321 1.75 3.61 2.94 6.08 97.67898 93.14 7467.10 11.56 29.25 40.80 

8 12.02 0.00546 2.92 4.88 4.67 7.81 99.45419 89.53 7602.80 10.13 29.30 39.43 

9 13.52 0.00094 4.19 6.18 6.61 9.75 99.90573 85.81 7637.32 9.02 29.35 38.37 

10 15.02 0.00012 5.46 7.46 8.57 11.71 99.98769 82.33 7643.59 8.13 29.39 37.52 

11 16.52 0.00001 6.69 8.69 10.50 13.64 99.99874 79.19 7644.43 7.40 29.42 36.82 

12 18.03 0.00000 7.88 9.88 12.37 15.51 99.99990 76.36 7644.52 6.79 244 36.23 

13 19.53 0.00000 9.04 11.04 14.19 17.33 99.99999 73.78 7644.53 6.79 31.92 38.71 

14 21.03 0.00000 10.18 12.18 15.98 19.12 100.00000 71.42 7644.53 6.79 34.37 41.16 

15 22.53 0.00000 11.30 13.30 17.74 20.88 100.00000 69.24 7644.53 6.79 36.83 43.62 

16 24.03 0.00000 12.41 14.41 19.48 22.62 100.00000 67.22 7644.53 6.79 39.28 46.07 
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4.6 Summary 

This chapter is broken down into 6 sections: the introduction, the case study, input parameters 

calculation process, and model output. The model output is the results of the model which are 

used to make decision on the adjustment to be made on the system. From Table 4.2, 6 of the 8 

input parameters are read directly from the field while the remaining 2 are calculated from the 

data collected in the field.  The 2 parameters are service rate, and inter-arrival rate which are 

calculated from service time and inter-arrival time, respectively. 

The results generated from the mode are as shown in Table 4.4. This table shows that, the 

waiting time increase as the number of trucks increases.  The increase in the number of trucks 

also leads to increased utilisation for both trucks and shovel. It can be evidently seen that when 

the trucks are 12, the shovel utilisation is optimal. The results in Table 4.4 are discussed in the 

next chapter (Chapter 5) where the effect of varying the number of trucks is graphically 

displayed. 
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5 DISCUSSION  

5.1 Introduction 

The main output parameters of the haulage system in mining are system production, shovel 

utilisation, truck utilisation, time trucks spend in the queue, and length of queue (Meredith, A., 

2013). These performance measures can be integrated to determine the optimal numbers of 

trucks in the system. The optimality of the system is where the system utilisation and 

production are increased while the time trucks spend in the queue, and length of the queue is 

reduced. This leads to a minimum cost of operation while achieving the production target. 

5.2 Results Discussion 

The effects of increasing the number of trucks from (2-16) to the system production, shovel 

utilisation, truck utilisation, trucks waiting time in the queue, length of the queue, and costs are 

graphically represented in Figure 5.1 to 5.6. This helps to track the trend as changes occur.  

The production of the shovel increases rapidly from 2 to 9 because the probability of forming 

a queue increases with number of trucks. As the trucks nears 12 from 9, the rate of change of 

the curve is small as compared to later. This shows high probability of the queue and also 

outmost utilisation being reached as shown in Figure 5.1. After 12, the curve becomes steady 

with the production remaining constant as seen in the table of results. Any addition of extra 

trucks leads the long queue, thus increasing the waiting time. 
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Figure 5.1: Shovel Production against the Number of Trucks 

The utilisation of the shovel goes in hand with the production and it gives indication on how 

engaged the shovel is. As shown in Figure 5.2, the utilisation of the shovel increases rapidly 

up to 9. This change is where the probability of having a queue is probably less as compared 

at the maximum utilisation. Thereafter, the utilisation increases gently up to 12. The gentle 

increment is as a result high probability of queue being formed. Afterward, the curve remains 

constant since system optimality has been reached. The addition of extra trucks leads to queue 

being formed, thus increasing the waiting time. 
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Figure 5.2: Shovel Utilisation against the Number of Trucks 

Truck utilisation is a reverse of shovel utilisation. This is because any addition of a truck to the 

system it will increase the probability of forming a queue. The truck utilisation is at 100% for 

the two trucks. This is any indication that trucks will not queue for loading since the number 

of trucks are equal to the number of trucks. The general trend thereafter is that truck utilisation 

decreases with number of trucks, as seen in Figure 5.3 indicating the possibility of forming a 

queue. At 12, the utilisation keep on reducing. This shown that for the trucks the optimal 

utilisation is not 100% unlike the shovel. This is because for group of population each unit is 

dependent of one another and thus there is higher chances of forming a queue when the 

population is big than when it is small. 
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Figure 5.3: Truck Utilisation against Number of Trucks 

The truck waiting time in the queue is much determined by the utilisation of the trucks. When 

the trucks are least utilised the probability the waiting time is higher while when trucks are 

utilised most the waiting time in the queue becomes less. As shown in Figures 5.4 the waiting 

time increases with the number of trucks because the probability of forming a queue increases. 

This means that when trucks are less a truck will wait for less time for the trucks ahead to be 

loaded as compared when trucks are more. The waiting time is the key parameters as it has 

cost implication on the system. This aspect will trigger an engineer to keep checking the system 

to minimise the waiting time. 
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Figure 5.4: Trucks waiting time in the Queue against the Number of Trucks 

The length of the queue is subject to the number of trucks in the system. Logically, the queue 

will be long if the number of trucks are more as compared when they are less.  For this reason, 

the length of the queue increasing as the number of trucks increases as shown in Figures 5.5. 

This means that the probability of forming long queue increase with the number of trucks. 
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Figure 5.5: Length of the Queue against the Number of Trucks 

The waiting time in the queue for any system cannot be eliminated, but it can be reduced to 

save the excessive cost of system operation (Caccetta, 2018). In Figure 5.6, the reduction of 

waiting time is achieved by optimising the system; through which the minimum unit cost of 

production is determined. The unit cost of the trucks remains constant from 2 up to 12 and then 

shifts upwards. This is because from 2 to 12 trucks the increase in the number of trucks is 

proportional to the increase in production. After 12, the production remained constant as the 

number of trucks increased.  

The unit cost of the shovel decreased from 2 to 12 and then remained constant thereafter. This 

is because the cost of operation of the shovel remained constant as the production increased 
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with an increasing number of trucks. After 12, the cost of operation and system production 

remained constant giving a steady curve. The optimisation curve (combined) is the sum of 

trucks and shovels unit cost. The total unit cost reduces as the number of trucks increases to 

12, and then significantly shifts upwards. The minimum total unit cost of production is 

achieved with 12. 12 being the lowest point of the optimisation curve it is called the null point. 

This point represents the number of trucks that can operate optimally with the two designated 

shovels to meet the company's production target at minimum cost. 

 

Figure 5.6: Unit cost of production against the number of trucks 



 

 60  

   

 

In Figure 6.1, the system was not stable when the trucks were 2 to 11 because truck inter-

arrival rate (λ) < shovels service rate (sμ). When shovel service rate exceeds the average truck 

arrival rate, this indicates the system is being under trucked and thus the addition of trucks 

accelerates the utilisation factor of the shovel. In addition, the stability of the system is 

measured when none of the sides of operation either trucks or shovels is being strained by 

operation. Table 4.3 shows, the optimal system production is 7644.52 tonnes/day which was 

approximately in line with the expected 7600 tonnes production target per day. 

The waiting time in the queue and length of the queues increasing as the number of trucks 

increases as Figures 5.4 and 5.5 shows. Table 4.3 and Figure 5.3, the truck utilisation when 16 

trucks are in the system is 67.22% and upon optimisation, the utilisation improved to 76.36 %. 

This improvement coincides with waiting time in the queue as 19.48 minutes/truck when 16 

trucks are in the system and 12.37 minutes/truck when 12 trucks were in the system. Overall, 

this translated to a 9.14% improvement in truck utilisation, and a 7.11 minutes/truck waiting 

time reduction after system optimisation. 

5.3 Summary 

In this chapter, the relationship between different parameters against number of trucks is 

discussed. The optimisation graph Figure 5.6 shows that on getting the optimal number of 

trucks, the cost value does not alter the truck number optimality (X-axis) rather it shifts the 

unit production cost along the Y-axis. Therefore, if the cost changes the system optimal number 

of trucks is not affected.  
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6 CONCLUSION, RECOMMEDATIONS AND SCOPE FOR FUTURE 

STUDY 

6.1 Conclusion 

This study focused on the application of the queuing approach to optimise shovel-truck haulage 

operations at a limestone quarry. In a mining operation, haulage costs accounts for more than 

50% of the total operation cost. Every company work on reducing the cost of operation to 

increasing the profit generated. This process is done through optimisation whereby the right 

number of trucks and shovels are selected to reduce delays in operation while delivering the 

required production target. From the results, we can conclude the following: 

1. With the system observed having 2 shovels and 16 trucks in operation, the model 

analyses indicate that the waiting times were long as a result of an excess number of 

trucks in the system. It was established that waiting time at the queue, Wq, and length 

of the queue, Lq, kept on increasing as the number of trucks increased. An attempt to 

optimise the haulage system necessitated the reduction of the waiting times, and 

consequently, reducing the length of the queues to obtain the production targets at the 

minimum costs.  

2. The optimal number of trucks was found to be 12, and thus the 4 extra trucks could be 

parked only to be used upon breakdown or when a truck is under maintenance. Shovel 

utilisation was at its peak with 12. From Table 4.3, the waiting time a truck spends in 

the queue reduced by 7.11 minute/truck (difference between waiting time in the queue 

for 16 and 12 trucks) as seen in model output. 
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3. The multichannel queuing model M1/M2/S/n proved to be a good approach to optimise 

the shovel-truck haulage system in mining. This approach gives a variety of 

performance measures that can be used to analyse and readjust the system to operate 

optimally.  Of prime importance, the model gives the parameter to measure the 

performance of the system set.  This interrelationship gives a clear vision of the 

adjustments that can be made in the system to achieve minimal operation costs. 

6.2 Recommendations 

Based on our finding, we recommend the following: 

1. The shovels serving the haulage system at the CattaPut limestone quarry should be 

maintained because their daily production coincides with the company’s daily 

production target. Their current maintenance operation state should also be maintained 

because lack of proper maintenance reduces equipment output and life. 

2. The 4 extra trucks should be parked or sold because the system optimal truck fleet size 

that can be served by the two shovels in place is 12 trucks. In this case, parking the two 

trucks reduces the cost of operation as well as providing standby trucks when there is 

a mechanical breakdown of either of the trucks in operation. 

3. The operations of the haulage system are very intense and thus random checks of the 

system performance characteristics should always be done to adjust the system 

accordingly. This helps in ensuring the final production target is achieved. Also, this 

enables monitoring the right time to replace equipment if it does not satisfy production 

requirements based on the operation performance measures. The application developed 
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in this study helps in evaluating and monitoring the truck and shovel system with ease, 

quickly and cheaply.  

4. The mine layout can have several pits, and these pits call for different haulage route. 

Therefore, multichannel queuing model (M1/M2/S) should be modified to include all 

haulage routes in the mine layout not just haulage activities in one pit.  

6.3  Scope for Future Study 

The multichannel can be expounded to capture operation in the entire mining layout. This is 

because mining operation involves operation from different routes (mines) and every route has 

different inter-arrival time. This means that each route should be customized independently to 

reflect the activities in that route. 

 

 

 

 

 

 

 



 

 64  

   

 

REFERENCES 

Burt, C. N., & Caccetta, L. (2014). Equipment selection for surface mining: a 

review. Interfaces, 44(2), 143-162. 

Burt, C. N. (2008). An optimisation approach to materials handling in surface mines (Doctoral 

dissertation, Curtin University). 

Caccetta, B. (2018). Equipment selection for mining: with case studies. Springer International 

Publishing.  

Choudhary. R. P (2015). Optimization of load-haul-dump mining system by oee and match 

factor for surface mining. International Journal of Applied Engineering and 

Technology, 5(2), 96-102. 

Darling. (2011). SME Mining Engineering Handbook. Society of Mining and Meturllurgy anf 

Exploration.  

Drebenstedt, C. (2018). Mining methods. Institute of Mining Freiberg University of Mining 

and Technologies. 

Ercelebi, S. G., & Kirmanli, C. (2018). Review of surface mining equipment selection 

techniques. In Mine planning and equipment selection 2000 (pp. 547-553). Routledge. 

Fisonga, M., & Mutambo, V. (2017). Optimization of the fleet per shovel productivity in 

surface mining: Case study of Chilanga Cement, Lusaka Zambia. Cogent 

Engineering, 4(1), 1386852. 



 

 65  

   

 

Hai, D. V. (2016). Optimization of truck and shovel for haulage system in the Cao Son mine 

using queuing theory. Viet Nam (Doctoral dissertation, Prince of Songkla University). 

Hardy, R. J. (2007). Selection Criteria Ernest Koenigsberg first applied queuing theory to 

mining practices in 1958. Curtin University of Technology., Perth. 

Hartman, H. L., & Mutmansky, J. M. (2002). Introductory mining engineering. John Wiley & 

Sons. 

Lashgari, A., Yazdani, A., & Sayadi, A. (2010, April). Methods for equipments selection in 

surface mining; review. In The 1st International Applied Geological Congress, 

Department of Geology, Islamic Azad University-Mashad Branch, Iran. 

Lin, L., Wang, Q., & Sadek, A. W.  (2014). Border crossing delay prediction using transient 

multi-server queueing models. Transportation Research Part A: Policy and Practice, 

64, 65-91. 

Mai, N. L., Topal, E. R. K. A. N., & Erten, O. K. T. A. Y. (2016). Application of operations 

research in open pit mine planning and a case study in sinquyen copper deposit, 

Vietnam. Gornye nauki i tekhnologii= Mining Science and Technology (Russia), (3), 

22-28. 

Morley, D., Joseph, T., & Lu, M. (2013). In search of the ideal truck-excavator combination. 

In ISARC. Proceedings of the International Symposium on Automation and Robotics in 

Construction (Vol. 30, p. 1). IAARC Publications. 



 

 66  

   

 

Patel, H., & Yadav, S. (2019). A study on application of queuing theory at petrol retail outlet. 

International Journal of Knowledge Management in Tourism and Hospitality, 2(2), 

151-159. 

Mahieu, P. ( 2017 ). Evaluation and Optimization of an Underground Haulage System using 

Discrete Event Simulation . Aalto University. 

Mauti, D. (2016). Material handling system selection by simulation using arena. Unpublised 

thesis from University of Mines and Technology,Tarkwa: Ghana, 86. 

Meredith, A. (2013). Applications of queuing theory for open-pit truck/shovel haulage 

systems. (Doctoral dissertation, Virginia Tech), 4-28. 

Mikhailov, A. V., Zhigulskaya, A. I., & Yakonovskaya, T. B. (2017). Excavating and loading 

equipment for peat mining. In IOP Conference Series: Earth and Environmental 

Science, Vol. 87, No. 2, p. 022014. 

Nouri Qarahasanlou, A., Ataei, M., Khalokakaie, R., Fatoorachi, S., & Barabady, R. (2019). 

Operating Environment Based Reliability Analysis of Mining Equipment Case Study: 

Molybdenum-Copper Mine (Sungun Copper Mine). Journal of Analytical and 

Numerical Methods in Mining Engineering, 9(18), 129-141. 

Que, S. A. O. (2016). Optimising design parameters of continuous mining transport systems 

using discrete event simulation. International Journal of Mining, Reclamation and 

Environment, 30(3), 217-230. 



 

 67  

   

 

Salem, A., Salah, A., Ibrahim, M., & Moselhi, O. (2017). Study of factors influencing 

productivity of hauling equipment in earthmoving projects using fuzzy set 

theory. International Journal of Innovation, Management and Technology, 8(2), 151.y. 

Shortle, J. F., Thompson, J. M., Gross, D., & Harris, C. M. (2018). Fundamentals of queueing 

theory (Vol. 399). John Wiley & Sons. 

Soofastaei, A., Aminossadati, S. M., Kizil, M. S., & Knights, P. (2016). A discrete-event model 

to simulate the effect of truck bunching due to payload variance on cycle time, hauled 

mine materials and fuel consumption. International journal of mining science and 

technology, 26(5), 745-752. 

Torkamani, E., & Askari-Nasab, H. (2015). A linkage of truck-and-shovel operations to short-

term mine plans using discrete-event simulation. International Journal of Mining and 

Mineral Engineering, 6(2), 97-118. 

Zeng, W. (2018). A simulation model for truck-shovel operation. Research Online, 1. 

Retrieved from https://ro.uow.edu.au/theses1/270 

 



 

 I  

   

 

APPENDICES 

Appendix A: Data Collected 

The tables A-1and A-2 show data of loading time (service time) and inter-arrival time 

respectively. The two sets of data are used to calculate service rate for the loaders and inter 

arrival rate for the trucks. These two parameters are the main input for the queuing. 
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Table A-1: Service Time Data 

Service time (Min) Service time (Min) 

7.35 7.44 

4.01 5.38 

6.37 7.41 

5.51 7.02 

6.56 7.49 

6.50 7.12 

6.21 7.02 

4.49 6.32 

6.29 6.13 

5.49 6.40 

6.46 9.01 

5.46 6.02 

5.58 6.40 

7.00 5.78 

6.07 6.21 

6.14 4.51 

6.26 7.00 

5.37 8.01 

6.43 7.11 

4.42 6.22 

5.43 6.41 

5.41 5.49 

7.20 6.34 

7.27 6.29 

6.51 6.05 

 



 

 III  

   

 

A- 2: Inter-arrival Time Data 

Inter-arrival time (min) Inter-arrival time (min) 

0.78 4.08 

2.13 0.78 

3.53 0.74 

3.65 2.63 

1.80 1.15 

1.78 3.14 

3.88 0.55 

2.49 0.76 

8.67 2.03 

2.47 1.45 

2.81 0.88 

4.00 1.54 

4.28 0.41 

4.74 0.59 

6.07 0.75 

4.18 2.32 

1.32 2.25 

3.63 0.04 

6.70 2.78 

4.85 0.28 

1.99 1.10 

3.20 0.81 

5.37 1.92 

3.80 0.89 

0.97 1.86 
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Table A-3 and table A-4 show dumping time and travelling time (travelling empty and 

travelling loaded) data, respectively. This is a supportive data of the model developed. This 

data is used in finding trucks utilisation. 

Table A-3: Dumping Time Data 

Dumping Time (min) Dumping Time (min) 

0.88 0.55 

0.65 0.50 

0.45 0.52 

0.47 0.48 

0.53 0.52 

0.60 0.75 

0.48 0.52 

0.58 0.67 

0.55 0.47 

0.63 0.45 

0.57 0.43 

0.50 0.55 

0.45 0.52 

0.70 0.47 

0.47 0.80 

0.47 1.24 

0.53 0.42 

0.55 0.58 

0.35 0.57 

0.62 0.50 

0.52 1.58 

0.45 0.47 

0.33 0.51 

0.48 0.52 
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Table A-4: Truck Travelling Loaded and Travelling Empty Time Data 

Travelling Empty Time ( min) Travelling loaded Time (min) 

15.78 18.26 

13.98 19.48 

11.21 17.17 

16.35 28.32 

12.40 23.25 

11.71 20.95 

16.07 26.50 

12.30 21.05 

21.89 23.58 

14.53 19.17 

12.86 20.38 

11.29 22.83 

18.22 23.90 

12.70 20.67 
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Appendix B: Developed Code  

This code was developed in mat-lab as per the algorithm in developed in chapter 3. The 

attached section of the code is the last part of result printing. The results include shovel 

production, shovel utilisation, trucks utilisation, truck waiting time in the queue, truck waiting 

time in the system, number of trucks in the queue, number of trucks in the system and graphical 

relationship between all the parameters and the different truck fleet. 

Shovel_Production = Shovel_Production(lowerbound:Truck_Start); 

Shovel_Utilization = Shovel_Utilization(lowerbound:Truck_Start); 

Truck_Utilization = Truck_Utilization(lowerbound:Truck_Start); 

Wq_Store = Wq_Store(lowerbound:Truck_Start); 

Lq_Store = Lq_Store(lowerbound:Truck_Start); 

Ws_Store = Ws_Store(lowerbound:Truck_Start); 

Ls_Store = Ls_Store(lowerbound:Truck_Start); 

P0_Store = P0_Store(lowerbound:Truck_Start); 

Lambda_Bar_Store = Lambda_Bar_Store(lowerbound:Truck_Start); 

Lambda_Store = Lambda_Store(lowerbound:Truck_Start); 

Qn_Store = Qn_Store(lowerbound:Truck_Start); 

  

figure(1) % Unit cost for shovel, truck, & combined 

plot(Truck_Count,UNIT_Cost_Count,'-.r','LineWidth',1.2) 

hold on 

plot(Truck_Count,Unit_Shovel_COST,'-.k','LineWidth',1.2) 

hold on 

plot(Truck_Count,Unit_Truck_COST,'-.b','LineWidth',1.2) 

xlabel('Number of Trucks') 

ylabel('Unit Cost of Production(Kshs/tonne)') 

xlim([Truck_Count(1) Truck_Count(end)]) 

legend({'Combined','Shovels','Trucks'},'Location','northeast') 

% hold on 

figure(2) 

plot(Truck_Count,UNIT_Cost_Count,'-.r','LineWidth',1.2) 
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xlabel('Number of Trucks') 

ylabel('Unit Cost of Production (Kshs/tonne)')  % Unit cost of production 

xlim([Truck_Count(1) Truck_Count(end)]) 

legend('Total Unit Cost','Location','northeast') 

  

figure(3) 

plot(Truck_Count,Shovel_Production,':bs','LineWidth',1.2) 

xlabel('Number of Trucks') 

ylabel('System Production (Tonnes/day)')  % Shovel production 

xlim([Truck_Count(1) Truck_Count(end)]) 

legend('System Production','Location','east') 

  

figure(4) 

plot(Truck_Count,Shovel_Utilization,'--mo','LineWidth',1.2) 

xlabel('Number of Trucks') 

ylabel('Shovel Utilisation (%)')  % Shovel utilization 

xlim([Truck_Count(1) Truck_Count(end)]) 

legend('Shovel Utilisation','Location','east') 

  

figure(5) 

plot(Truck_Count,Truck_Utilization,'-.mo','LineWidth',1.2) 

xlabel('Number of Trucks') 

ylabel('Truck Utilisation(%)') 

xlim([Truck_Count(1) Truck_Count(end)]) 

legend('Truck Utilisation','Location','northeast') 

  

figure(6) 

plot(Truck_Count,Wq_Store,'-.r*','LineWidth',1.2) 

xlabel('Number of Trucks') 

ylabel('Truck Waiting time, Wq (Min)') 

xlim([Truck_Count(1) Truck_Count(end)]) 

legend('Truck waiting Time in the Queue','Location','northwest') 

  

figure(7) 
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plot(Truck_Count,Lq_Store,'-.b*','LineWidth',1.2) 

xlabel('Number of Trucks') 

ylabel('Length of the Queue, Lq (Trucks)') 

xlim([Truck_Count(1) Truck_Count(end)]) 

legend('Length of the Queue','Location','northwest') 

  

figure(8) 

plot(Truck_Count,Qn_Store,'-.b','LineWidth',1.2) 

xlabel('Number of Trucks') 

ylabel('System Production,Qn (Tonnes/day)') 

xlim([Truck_Count(1) Truck_Count(end)]) 

legend('System Production','Location','northwest') 

end 

  

fprintf('\tTrucks\t Total Unit Cost\t Shovel Unit Cost\t Truck Unit Cost\t Truck Utilization\t Shovel Utilization\t 

Production Qn\n') 

 for i = 1:length(Truck_Count) 

fprintf('%10.0f\t\t%10.5f\t\t%10.5f\t\t\t%10.5f\t\t\t%10.5f\t\t\t%10.5f\t\t\t%10.5f\n',Truck_Count(i),UNIT_Cost_

Count(i),Unit_Shovel_COST(i),Unit_Truck_COST(i),Truck_Utilization(i),Shovel_Utilization(i),Qn_Store(i)) 

 end 

fprintf('\tTrucks\t\t Lambda\t\t Lambda_Bar \t\t P0 \t\t Lq \t\t Ls \t\t Wq \t\t Ws\t\t Shovel Production\n') 

 for i = 1:length(Truck_Count) 

fprintf('%10.0f\t\t%10.4f\t\t%10.4f\t%10.5f\t%10.4f\t%10.4f\t%10.4f\t%10.4f\t%10.5f\n',Truck_Count(i),Lambd

a_Store(i),Lambda_Bar_Store(i),... 

    P0_Store(i),Lq_Store(i),Ls_Store(i),Wq_Store(i),Ws_Store(i),Shovel_Production(i)) 

 end 
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Appendix C: Publication 

The following is a peer -reviewed publication that has emanated from this work: 

1. Kaungu Elijah, Githiria J., Mutua Samuel, Dalmus Mauti, 2021. Optimisation of shovel-

truck haulage system in an open pit using queuing approach. Arabian Journal of 

Geosciences 14(11), http://doi.org/10.1007/s12517-021-07365-z  
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