
http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 2; 2019

Bayesian Joint Models for Longitudinal and Multi-state Survival Data
Josua Mwanyekange1, Samuel Musili Mwalili1,2 & Oscar Ngesa1,2,3

1 Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUSTI), Department of Mathematics
(Statistics), Kenya
2 Jomo-Kenyatta University of Agriculture and Technology (JKUAT), Department of Statistics and Actuarial Science,
Kenya
3 Taita Taveta University, Department of Mathematics and Informatics, Kenya

Correspondence: Josua Mwanyekange, Pan African University, Institute for Basic Sciences, Technology and Innovation
(PAUSTI), Department of Mathematics (Statistics), Kenya. E-mail: josua@aims-cameroon.org

Received: December 2, 2018 Accepted: January 7, 2019 Online Published: January 15, 2019

doi:10.5539/ijsp.v8n2p34 URL: https://doi.org/10.5539/ijsp.v8n2p34

Abstract

Joint models for longitudinal and time to event data are frequently used in many observational studies such as clinical trials
with the aim of investigating how biomarkers which are recorded repeatedly in time are associated with time to an event of
interest. In most cases, these joint models only consider a univariate time to event process. However, many clinical trials
of patients with cancer, involve multiple recurrences of a single event together with a single terminal event experienced by
patients over time. Therefore, this article proposes joint modelling approachs for longitudinal and multi-state data. The
approach considers two sub-models that are linked by a common latent random variable. The first sub-model is linear
mixed effect model that defines the longitudinal process and the second sub-model is a proportional intensity function for
the multi-state process. Furthermore, on the proportional intensity model, two different formulations are used to define
dependence structure between longitudinal and multi-state processes. In this article, a semi-Markov process that consider
the time spent in the current state is defined for the transitions between states. Moreover, the time spent in each transient
state is assumed to have Gompertz distribution. A Bayesian method using Markov Chain Monte Carlo (MCMC) is
developed for parameter estimation and inferences. The deviance information criterion (DIC) is also derived for Bayesian
model selection and comparison. Finally, our proposed joint modeling approach is evaluated through a simulation study
and is applied to real datasets (colorectal and colorectal.Longi) which present a random selection of 150 patients from a
multi-center randomized phase III clinical trial FFCD 2000-05 of patients diagnosed with metastatic colorectal cancer.
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1. Introduction

In many biomedical studies such as HIV/AIDS studies, subjects’ biomarkers are collected repeatedly over time together
with the time to occurrence of a clinical event. The clinical event can be defined as the occurrence of the same type of event
more than once or different types among treatment centres. For instance, in prostate cancer , a subject can be followed
after cancer treatment and at each clinical visit, biomarker (prostate specific antigen) called longitudinal measurements
are recorded together with the time to re-occurrence of cancer (Yu et al., 2008). Another example include the study of
time to re-hospitalization by Dendale et el. (2012). In their study, they stated that in order to improve the clinical outcome
(re-hospitalization event times) for chronic heart failure patients, patients’ blood pressure, body weight and heart rate were
measured repeatedly after their first discharge from the hospital along with the time to re-hospitalization. This process
(re-hospitalization) is considered as multi-state survival data since a patient could be re-hospitalized more than once over
time after the initial discharge.

In the past decade, there have been tremendous works on simultaneously analysis of longitudinal and time to event data.
The ultimate idea of these studies, is to account for dependence between these two processes and provide valid and
efficient inferences. Traditionally, these two processes are analysed separately, which in most cases leads to inefficient
inferences. Classical examples are given by Rizopoulos. (2011) and Guo, & Carlin. (2004) on the HIV/AIDS progression
in which CD4 counts were collected repeatedly over time together with the time to AIDS or death. Faucett and Thomas,
(1996), Wuffsohn & Tsiatis. (1997), also gave comprehensive reviews of joint models for longitudinal and time to event
data. In all these studies, the same principle was used, that is two sub-models were defined, one for longitudinal process
and one for time to event process linked by a common latent structure.

Several extensions of joint models have been proposed in recent studies (Ibrahim et al., 2010, McCrink et al., 2013,
Lawrence Gould et al., 2015; Król et al., 2016). Another attractive modelling approach in the joint modelling framework
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is the shared frailty models. These models attempts to account for unobserved heterogeneity which may occur due to the
fact that some subjects are more prone to the event than others subjects (Hougaard, 2012). The frailty term is imposed on
the hazard function to account for unmeasured covariates. In early development of frailty models, Vaupel et al. (1979)
explained that different subjects are considered to be at risk of a clinical event even though some measurements attributes
to the risk make no difference in the model. This makes the joint models more efficient and less biased. However, the
frailty models have received some criticisms in current development of joint models. One of such criticisms is in a case
of multi-state data (recurrent events and terminal event), frailty models assumes that the joint distributions of both events
are completely independent.

Under the joint modelling framework, several authors have developed joint models for repeated measurements and mul-
tivariate time to events. One of such authors is Chi & Ibrahim (2006), who proposed joint models for multivariate
longitudinal and multivariate survival data. A joint model of longitudinal and competing risks survival data was proposed
by Huang et al. (2010). However, there have been insufficient studies on the joint models for longitudinal outcomes with
multi-state data. The most recently study on such joint models was proposed by Ferrer et al. (2016). Their approach
introduces a shared random effects variable for longitudinal measurements and times of transitions between states. To
the best of our knowledge, there exist no joint model for longitudinal and multi-state data (recurrent events with death
as terminal event) under the framework of Bayesian inference. Therefore, we address this problem by jointly modelling
longitudinal and multi-state data under the framework of continuous time Markov process with transient states represent-
ing recurrent events and a single absorbing state for terminal event. As pointed out by de Castro et al. (2015), many
issues remain unaddressed in the existing literature. One of the issues they pointed out is the dependence structure of the
gap times between two states which they say is not always explicitly accounted for. Hence, this paper seek to develop a
joint multi-state semi-Markov model that accommodates the time spent in each transient state. Our model comprises two
sub-models linked by shared random effects. The first sub-model is linear mixed effect model for modelling evolution of
longitudinal measurements where the interrelation between measurements and subject specific effects are accounted by
random intercept and slope. The second sub-model is for transition intensities between states which includes covariates
history of the process.

Computation for this proposed modelling approach can be awkward. Therefore, in this work, we adapt Bayesian Monte
Carlo Markov chain (MCMC) technique that requires both likelihood function which defines the random process that
generates the data and the prior probability distributions for the parameters. In particular, we carry out the computational
analysis using an existing software package OpenBugs. The rest of this paper is organized as follows: In section 2, we
presented the formulation of the joint multi-state semi-Markov model. In section 3, we presented estimation and inference;
this section includes joint likelihood, Bayesian parameter estimation procedure which consists of prior and joint posteriors
specification. Section 4 presents Monte Carlo simulation study to assess the performance of the proposed joint modeling
approach. Applications of the proposed joint modeling approach to real data are given in section 5. Then, the last section
presents the discussion.

2. Joint Multi-state Semi-Markov Model Framework

The joint multi-state semi-Markov model comprised two sub-models: 1) a longitudinal sub-model(linear mixed model)
and multi-state semi-Markov sub-model. These sub-models are linked through any function of longitudinal sub-model
parameters or shared random effects.

2.1 Longitudinal Sub-model

Suppose that we have a sample of n subjects under study, denoted by i(i = 1, 2, ..., n). Let yi
(
ti j

)
be ni × 1 column vector of

random variables representing the observed longitudinal outcomes for subject i measured at time points ti j
(
ti1, ti2, ..., tini

)
,

where j = (1, 2, ..., ni). Here ni represents the numbers of repeated measurements for subject i which varies among
subjects. In practice, we may have missing observations for some subjects. This happens due to the fact that some
subjects may decide to drop out of the study for reasons not related to the occurrence of event of interest. Therefore, in
this study, we assume that these missing values in longitudinal measurements trajectory are missing independently of the
unobserved measurements.

To analyse the longitudinal process, we define the distribution of yi j by a Linear Mixed Effects model,

yi j = µ
∗
i (ti j) + ϵi j, (1)

where
µ∗i (ti j) = x

′

i
(
ti j

)
β + ηi

(
ti j

)
is the true value of yi j and the outcome variable xi is the (ni× p) design matrix of fixed effects which includes possible time
dependent covariates; β is a p × 1 corresponding column vector of the fixed effect coefficients; ηi

(
ti j

)
= z

′

i
(
ti j

)
wi, where zi
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denotes (q × 1) design matrix for the random effects; wi ∼ MVN
(
0, A

)
and ϵi is a (ni × 1) column vector of the residuals

which represents the part of yi j which is not accounted by the model: x
′(

ti j
)
β+ηi

(
ti j

)
such that ϵ i j ∼ N

(
0, σ2

ϵ Ini

)
. It should

be noted here that A represents the variance co-variance matrix in which correlations among the repeated measurements
and within subject correlation measurement values are represented. On other hand residuals among subjects and random
effects wi are independent of each other. The variance covariance matrix is defined as

A =
(

σ2
wi0

ρσwi0σwi1

ρσwi0σwi1 σ2
wi1

)
,

where ρ denotes correlation between random intercept and slope.

2.2 Multi-state Semi-Markov Sub-model

A multi-state semi-Markov model is a stochastic process in which individuals occupy one of the set of discrete state at any
time and their transition probabilities to the next possible states only depends on history process through the time spent in
the current transient state (Foucher et al., 2007).

Figure 1. Multi-state model with three transient states (recurrent events) and one obsorbing state (terminal event)

Let Xi = {Xi(t), t ≥ 0} be the right continuous random process for subject i with finite space E = {0, 1, 2, ..., M − 1,M},
where the integers 0, 1, 2, ..., M − 1 represents the cumulative number of recurrences that subject experienced over the
study period. In addition, M represent the absorbing state(e.g., death). In general, Xi(t) is defined as the state in which the
process is at time t. This process includes the value of possible time dependent covariates up to time t.

We assume that all subjects enter the study at the same time through initial state Xi
(
ti,0

)
= Xi(0) with zero recurrence.

Subjects’ markers, time to recurrence and death time are recorded periodically. This allows the data to be stratified in
such a way that, a subject move directly from state 0 to an absorbing state or alternatively move to state 1 immediately
after experiencing the first recurrence. It follows that a subject is expected to stay in state 1 until it experience its second
recurrence then move to state 2. If death was observed, then it move to an absorbing state and so on. This process is said
to have a semi-Markov property. That is, individual intensity of moving between states Xi

(
ti,r+1

)
= g and Xi

(
ti,r+1

)
= h

depends strongly on history process through the duration spent in the current state Xi
(
ti,r

)
= g.

Let di,r denote the holding time for subject i in the state Xi(ti,r) before moving to state Xi(ti,r+1), represented by di,r =

ti,r+1 − ti,r, where ti,r is the time of entry into state Xi(ti,r) for r = 0, ...,mi. Also let Di,r denote the corresponding random
variable called sojourn time. Then, borrowing some ideas from Foucher et al. (2005), we can express

pi,gh = P
(
Xi(ti,r+1) = h|Xi(ti,r) = g

)
, g, h ∈ E, r ≥ 0 (2)

as the probability of transition from state g to state h with constant
∑

h,g pi,gh = 1. Note that if state g is a transient state
then, pi,gh ≤ 0 and pgh = 0 for g = h. If state g is an absorbing state, the pi,gh = 0 for h , g and pi,gh = 1 for h = g. The
semi-Markov property assumption works in such a way that, time is rest to zero at each transition. Since our main interest
is on the time elapsed between consecutive transitions, we can define the conditional distribution function (CDF) of that
time as

Fi,gh(di,r) = P
(
Di,r ≤ di,r |Xi(ti,r) = g, Xi(ti,r+1) = h

)
, di,r > 0. (3)

As usual in survival analysis, survival function s and the transition intensity θi,gh associated to probability distribution
function of sojourn time can be deduced from the probability density function (pdf) fi,gh. If we assume that state g is
transient state, that is state 0 to state M − 1 in our case, we can define the pdf of the sojourn time in transient states as

fi,gh
(
di,r

)
= lim
∆di,r↓0

1
∆di,r

P
(
di,r ≤ Di,r < di,r + ∆di,r |Xi

(
ti,r+1

)
= h, Xi

(
ti,r

)
= g

)
. (4)
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Survival function can now be realized from equation (4) as

S i,gh(di,r) = P
(
Di,r ≥ di,r |Xi(ti,r+1) = h, Xi(ti,r) = g

)
=

∫ ∞

di,r

fi,gh(s)ds (5)

and the conditional transition intensities of the semi-Markov process corresponds to the probabilities of transition from
state g to state h between di,r and di,r + ∆di,r given that the process is in state g for a duration di,r is defined by

θi,gh(di,r) = lim
∆di,r↓0

1
∆di,r

P
(
di,r ≤ Di,r < di,r + ∆di,r |Di,r > di,r, Xi(ti,t+1) = h, Xi(ti,r) = g

)
=

fi,gh(di,r)
S i,gh(di,r)

. (6)

By using the total probability theorem, marginal survival function of sojourn times in state g is defined from transition
probability pgh and survival function S g as

S i,g
(
di,r

)
=1 − P

(
Di,r ≤ di,r |Xi

(
ti,r

)
= g

)
=

∑
h,h

pi,gh

(
1 − Fi,gh

(
di,r

))
=

∑
h,h

pi,ghS i,gh
(
di,r

)
. (7)

The transition intensity function of the semi-Markov process is said to be related to the transition intensity of the sojourn
time, the survival function of the sojourn times and the probabilities of the process. Hence, the corresponding transition
intensity function for any subject moving from state g to state h given that the process stays in state g for duration di,r is
defined by

λi,gh(di,r) = lim
∆di,r↓0

1
∆di,r

P
(
di,r ≤ Di,r < di,r + ∆di,r, Xi(ti,r+1) = h|Di,r > di,r, Xi(ti,r) = g

)
=

pi,ghS i,gh
(
di,r

)
θgh

(
di,r

)
S i,g(di,r)

, (8)

where g , h, g, h ∈ S and λi,gg(di,r) = −
∑

h,g λi,gh(di,r). Hence, equation (7) corresponds to the instantaneous joint
probability of moving to state h from state g after staying in state g for duration di,r.

2.3 Distribution of Sojourn Times

We assume that the sojourn times (di,r) follow a Gompertz distribution (GD) (Gompertz,1824) with parameter αgh and
γgh such that, di,r ∼ Gompertz

(
αgh, γgh

)
. This distribution is considered to be one of the classical mathematical models

that represent survival function based on laws of mortality. It plays an important role in modelling human mortality.
El-Gohary et al. (2013) stated that, Gompertz distribution has been used as a growth model to fit the tumor growth due to
its flexibility. It’s applications are mainly in the area of actuarial and demography and biology (Ahuja & Nash, 1967). In
absence of covariates, the Gompertz distribution has the following probability density function,

fi,gh
(
di,r

)
= αgh exp

{
γghdi,r

}
exp

{
−
αgh

γgh

[
exp

{
γghdi,r

}
− 1

]}
. (9)

The survival function of the GD is given by

S i,gh
(
di,r

)
= exp

{
−

∫ di,r

0
αgh exp {γs} ds

}
= exp

{
−
αgh

γgh

[
exp

{
γghdi,r

}
− 1

]}
(10)

and its corresponding transition intensity function is defined by

λi,gh
(
di,r

)
=

fi,gh
(
di,r

)
S i,gh

(
di,r

) = αgh exp
{
γghdi,r

}
exp

{
−
αgh

γgh

[
exp

{
γghdi,r

}
− 1

]}
exp

{
−
αgh

γgh

[
exp

{
γghdi,r − 1

} ]}
=αgh exp

{
γghdi,r

}
, (11)
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When γgh > 0, the hazards increases and when γgh < 0, the hazards decreases. While γgh = 0, the transition intensity
function is equivalent to the one from an exponential distribution with constant hazard rate αgh.

The cumulative function
(
Fi,gh

(
di,r

))
of GD is given by

Fi,gh
(
di,r

)
= P

(
di,r ≤ di,r

)
= 1 − S i,gh

(
di,r

)
. (12)

From equation 12, we have that the quantiles of the GD can be obtained by using the following expression.

F−1
(
ui,gh

)
=

1
γgh

log
(
−
γgh

αgh
log

(
1 − ui,gh

)
γgh + 1

)
, (13)

where ui,gh ∼ U (0, 1), γgh > 0 and α > 0.
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Figure 2. The survival (left)and hazard (right) function of the Gompertz distribution di,r ∼ GD (αgh; γgh)

with constant αgh and different values of γgh

2.4 Incorporation of Time-Varying Covariates on Sojourn Times Distribution

In order to take into account the influence of the random effects from longitudinal process and the covariates on the waiting
time distribution, we used the assumption of the risks proportionality. These factors are included in the transition intensity
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function of the semi-Markov process. Let vi,gh = (v1
i,gh, ..., v

mi
i,gh)

′
denotes the mi vector of prognostic factor associated with

p-vector of regression coefficient ξgh = (ξ1
gh, ..., ξ

mi
gh) for transition g→ h. Let χi,gh(wi; di,r) be the function that defines the

dependent structure between the longitudinal and multi-state semi-Markov processes. Different formulations of random
effects function on the transition intensity function can be used in order to propose how the intensity of experiencing a
transition depends on the unobserved value of biomarker at di,r. For example,

χi,gh(wi; di,r) =

µ∗i (di,r), the current value of biomarker
wi, the shared random effects

Hence, the transition intensity function is given by

λi,gh

(
di,r |vi,gh, χi,gh

(
wi; di,r

))
= λgh,0

(
di,r

)
exp

{
v
′

i,ghξgh + χ
′

i,gh
(
wi; di,r

)
ψgh

}
, (14)

where λgh,0
(
di,r

)
denotes the baseline intensity function as defined by equation (11) and ψgh is a vector of parameters that

quantifies the strength between longitudinal and survival process for each transition.

Thus, we have

λi,gh

(
di,r |vi,gh, χi,gh

(
wi, di,r

))
=


λgh,0

(
di,r

)
exp

{
v
′

i,ghξgh + µ
∗
i
(
di,r

)
ψgh

}
, (Model I)

λgh,0
(
di,r

)
exp

{
v
′

i,ghξgh + ψghwi

}
, (Model II)

Note that, from the transition intensity function of the waiting times, the regression coefficients can be interpreted in terms
of relative risk. Also, the time-dependent covariates can be considered. However, the effects of time depended covariates
can be burdensome.

Using the transition intensity function (Model I), we can define the cumulative transition intensity function for subject i
with single movement from state g to state h as follows

Λi,gh

(
di,r |vi,gh, kdi,r

)
=

∫ di,r

0
λgh (s) ds, ∀ r ≥ 0

=

∫ di,r

0
λgh,0 (s) exp

{
v
′

i,ghξgh + χ
′

i,gh (s)ψgh

}
ds

=

∫ di,r

0
αgh exp

{
γghs

}
exp

{
v
′

i,ghξgh + χi,gh (s)ψgh

}
ds

=αgh exp
{
v
′

i,ghξgh

} ∫ di,r

0
exp

{
γghs + ψghks

}
ds

=αgh exp
{
v
′

i,ghξgh

} exp
{(
γgh + ψghk

}
di,r

)
− 1

γgh + ψghk

 , (15)

where the current value χi,gh
(
wi; di,r

)
is assumed to be proportional to di,r such that χi,gh

(
wi; di,r

)
= kdi,r, with k > 0.

and the survival function is given by

S i,gh

(
dgh|vi,gh, kdi,r

)
= exp

−αgh exp
{
v
′

i,ghξgh

} exp
{(
γgh + ψghk

)
di,r

}
− 1

γgh + ψghk


 . (16)

The probability density function of the waiting times is given by

fgh

(
di,r |vi,gh, kdi,r

)
=αgh exp

{
γghdi,r

}
exp

{
v
′

i,ghξgh + χ
′

i,gh
(
di,r

)
ψgh

}
× exp

−αgh exp
{
v
′

i,ghξgh

} exp
{(
γgh + ψghk

)
di,r

}
− 1

γgh + ψghk


 . (17)
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Now, consider 0 < d∗i,0 < d∗i,1 < d∗i,2 ≤ t to be the true direct observed durations for subject i through state 0,1, 2 before
state 3 between time 0 and t. The cumulative transition intensity for subject i at first recurrence duration di,0 is given by

Λi
01

(
d∗i,0|vi,01, kd∗i,0

)
=

∫ d∗i,0

0
α01 exp

{
γ01s01 + ξ01vi,01 + ψ01ks01

}
ds01

=α01 exp
{
ξ01vi,01

} ∫ d∗i,0

0
exp {γ01s01 + ψ01ks01} ds01

=α01 exp
{
ξ01vi,01

} [exp {(γ01 + ψ01k) s01}
γ01 + ψ01k

]d∗i,0

0

=α01 exp
{
ξ01vi,01

} exp
{
(γ01 + ψ01k) d∗i,0

}
− 1

γ01 + ψ01k

 (18)

and the inverse cumulative function is given by

Λ−1
i,01

(
d∗i,0|vi,01, kd∗i,0

)
=

1
γ01 + ψ01k

log
( (γ01 + ψ01k) d∗i,0
α01 exp

{
ξ01vi,01

} + 1
)
. (19)

Consequently, the survival function for subject i in state 0 between time 0 and d∗i,0 is given by

S i,01

(
d∗i,0|vi,01, kd∗i,0

)
= exp

−
α01 exp

{
ξ01vi,01

} exp
{
(γ01 + ψ01k) d∗i,0

}
− 1

γ01 + ψ01k



 . (20)

Now, suppose that subject i has experienced second recurrence at d∗i,1, then its cumulative transition intensity is expressed
as

Λi,12

(
d∗i,1|vi,01, kd∗i,1

)
=

∫ d∗i,1

d∗i,0

α12 exp
{
γ12s12 + ξ12vi,12 + ψ12ks12

}
ds12

=α12 exp
{
ξ12vi,12

} [exp {(γ12 + ψ12k) s12}
γ12 + ψ12k

]d∗i,1

d∗i,0

=α12 exp
{
ξ12vi,12

} exp
{
(γ12 + ψ12k) d∗i,1

}
− exp

{
(γ12 + ψ12k) d∗i,0

}
γ12 + ψ12k

 (21)

and its inverse cumulative transition intensity is defined by

Λ−1
i,12

(
d∗i,1|vi,01, kd∗i,1

)
=

1
γ12 + ψ12k

log
( (γ12 + ψ12k) d∗i,1
α12 exp

{
ξ12vi,12

} + A1

)
, (22)

where
A1 = exp

{
(γ12 + ψ12k) d∗i,0

}
The survival function for subject i in state 1 between time d∗i,0 and d∗i,1 is

S i,12

(
d∗i,1|vi,01, kd∗i,1

)
= exp

−
α12 exp

{
ξ12vi,12

} exp
{
(γ12 + ψ12k) d∗i,1

}
− A1

γ12 + ψ12k



 . (23)

If subject i transit to an absorbing state, that is subject i dies at time d∗i,2, then its cumulative transition intensities can be
expressed as follows:

Λi
23

(
d∗i,2|vi,01, kd∗i,2

)
=

∫ d∗i,23

d∗i,1

α23 exp
{
γ23s23 + ξ23vi,23 + ψ23ks23

}
ds23

=α23 exp
{
ξ23vi,23

} [exp {(γ23 + ψ23k) s23}
γ23 + ψ23k

]d∗i,2

d∗i,1

=α23 exp
{
ξ23vi,23

} exp
{
(γ23 + ψ23k) d∗i,2

}
− exp

{
(γ23 + ψ23k) d∗i,1

}
γ23 + ψ23k

 (24)
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and its inverse cumulative transition intensities is

Λi,23

(
d∗i,2|vi,01, kd∗i,2

)
=

1
γ23 + ψ23k

log
( (γ23 + ψ23k) d∗i,2
α23 exp

{
ξ23vi,23

} + A2

)
, (25)

where
A2 = exp

{
(γ23 + ψ23k) d∗i,1

}
The survival function for subject i in state 2 between time d∗i,1 and d∗i,2 is

S i,22

(
d∗i,2|vi,01, kd∗i,2

)
= exp

−
α23 exp

{
ξ23vi,23

} exp
{
(γ23 + ψ23k) d∗i,2

}
− A2

γ23 + ψ23k



 . (26)

3. Parameter Estimation and Inference

The multi-state process defined in section 2 is continuous and only observed between the left truncated time ti,0 and the
right censoring Ci, such that the observed process is expressed as Xi =

{
Xi(t), ti,0 ≤ t ≤ Ci

}
. During this observation time

interval, the ith subject may transit mi − 1 times through all transient states at times ti,1 < ti,2 < ... < ti,mi−1. At these
time points, subject i occupies the state Xi

(
ti,1

)
, Xi

(
ti,2

)
, ..., Xi

(
ti,mi−1

)
, with Xi

(
ti,r

)
, Xi

(
ti,r+1

)
for all r ≥ 0. At the last

observation time ti,mi , subject i may move again or censored. Let t∗i,r+1 denote the true observed transition for subject i and
δi,r+1 = I(ti,r+1≤t∗i,r+1

), represents which event has occur at ti,r+1(transition or censoring), 1 if transition and 0 otherwise. For

convenient interpretation, we denote δi =
(
δi,1, δi,2, ..., δi,mi

)
as the vector of observed transition indicators.

3.1 Likelihood Function

The likelihood function associated to semi-Markov process can be defined as

L =
n∏

i=1

mi∏
r=0

[
pXi(ti,r),Xi(ti,r+1) fXi(ti,r),Xi(ti,r+1)

(
ti,r+1 − ti,r

)]δi,r+1 ×
[
S Xi(ti,r).

(
ti,r+1 − ti,r

)]1−δi,r+1
. (27)

Now, linking the longitudinal and multi-state sub-models, we first introduce some notation. Let ϕ = (ϕY , ϕT , ϕw) be
the vector of all possible parameters to be estimated, where ϕY denotes all parameters for the longitudinal outcome

model
(
ϕY =

(
β, σ2

ϵ , σϵ
)⊤)

, ϕT includes all parameters for transition intensity
(
ϕT =

(
αgh, γgh, ξgh, ψgh

)′)
and ϕw represents

all parameters from random effects density function. We denote f
(
yi, di,r,wi|ϕ

)
the joint distribution of

(
yi, di,r,wi

)
written

as

f
(
yi, di,r,wi|ϕ

)
=

∫
fY (yi|ϕY ; wi) fT

(
di,r |ϕT ; wi

)
fw (wi|ϕw) , (28)

where fy (yi|ϕY ; wi) is the probability density function of yi defined by

fY
(
yi|ϕy; wi

)
=

1(
2πσ2

ϵ

)ni/2
exp

{
− 1

2σ2
ϵ

(
yi −

(
x
′

i(ti j)β + z
′

i(ti j)wi

))2
}
, (29)

fT
(
di,r |ϕT ; wi

)
is probability density function of sojourn times di,r defined as

fT
(
di,r |ϕT ; wi

)
=

[
λgh

(
di,r |ϕT , vi,gh; wi

)]δi,r+1
exp

{
−

∫ di,r

0
λgh

(
s|ϕT , vi,gh; wi

)
ds

}
(30)

and fw (wi|ϕw) is the probability density function of random effects wi given by

fw (wi|ϕw) = (2π)−q/2 |A|−1/2 exp
{
−1

2
w⊤i A−1wi

}
. (31)
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LetDobs =
{(

yi, di,r, δi,r+1, xi, vi,gh

)
, i = 1, ..., n, r = 0, ...,mi, g, h ∈ E

}
represents the observed data. Under the conditional

independence assumption between the random effects and measurement errors of the longitudinal outcomes, the joint
likelihood of the longitudinal and the transition intensity sub-models for all observed data is defined by

L (ϕ|Dobs) =
n∏

i=1

ni∏
j=1

mi∏
r=0

∫
wi

fY
(
yi j|xi,wi; ϕY

)
fT

(
di,r |wi, δi,r+1, vi,gh; ϕT

)
fw (wi|ϕw) dwi. (32)

Taking log of (32), gives

logL (ϕ|Dobs) =
n∑

i=1

∫
wi

[ 
ni∑
j=1

log fY (yi|wi, xi; ϕY )

 +
 mi∑

r=0

log fT
(
di,r |wi, δi,r+1, vi,gh; ϕT

)
+ log fw (wi|ϕw)

]
dwi. (33)

3.2 Bayesian Inference

Bayesian inference is an approach of statistical inference that uses the Bayes’ rule to update the estimates of ϕ after
observing some data. This approach is one of the crucial techniques used in modern statistics, especially in mathematical
statistics. In Bayesian framework, the unknown quantity, ϕ is treated as a random variable. More precisely, we assume
that we have some available initial guess about the distribution of ϕ. This distribution is referred to as prior distribution.
Within the Bayesian paradigm, this distribution can be incorporated into analysis. Hence, with the use of Bayes’ theorem,
we can combine the joint likelihood function (32) with prior distribution to give posterior distribution for the parameters.
The posterior summaries of the interest of this distribution of the parameters are obtained using simulation techniques.
In the case of the joint model, the posterior distribution can be very complex leading to difficulty in using analytical
methods (Zhang et al., 2017). To overcome such difficulties, we proposed Gibbs sampler technique. This is a well known
Markov Chain Monte Carlo (MCMC) method that generates samples from posterior distribution of parameters by repeated
sampling from the full-conditional densities of each components. More details are given in Robert and Casella (2004).

3.2.1 Prior Distributions

Let p (ϕ) represent prior distribution of a set of unknown parameters ϕ. Choosing prior distributions can be challenging
in a case where prior information about the current data is unknown. In this work, we chose prior that will have little to
no effect on our final results. This type of prior distribution is called non-informative prior distribution. The ultimate idea
of using a non-informative prior distribution is to avoid some external information creeps into analysis. That is, we want
observed data to speak for themselves. The prior distributions were specified as follows:

We assume independent normal prior for β, γgh, ξgh and ψgh such that β ∼ N(µβ, τβ), γgh ∼ N(µγgh , τγgh ), ξgh ∼
N(µξgh , τξgh ) and ψgh ∼ N(µψgh , τψgh ), where µcoe f and τcoe f are the mean and variance of the hyper-parameters. An
independent gamma prior distribution for the Gompertz shape parameter αgh was chosen such that αgh ∼ Γ(agh, bgh)
where agh > 0 and bgh > 0 are specified with low values such as 0.001 for each transition. Furthermore, we assume
inverse gamma prior for residuals such that σ2

ϵ ∼ IG(a1, b1) where a1 > 0 and b1 > 0. For the covariance matrix A, we
take an inverse wishart prior, A ∼ IW(A0, v0) where A0 denotes the q × q positive definite matrix with v0 degrees of
freedom.

Hence, the joint prior distribution for ϕ is thus defined by

p(ϕ) =p(β) × p(σ2
ϵ ) × p(A) × p(γgh) × p(ξgh) × p(ψgh) × p(αgh)

∝ exp
{
− 1

2

(
β − µβ

)′
τ−1
β

(
β − µβ

) }
×

(
σ2
ϵ

)−a1−1
exp

{
− b1

σ2
ϵ

}
×|A|−(ν0+q+1)/2 exp

{1
2

tr
(
A0 A−1

) }
×

[∏
h,g

α
agh−1
gh exp

(
−αghbgh

)
× exp

{1
2

(ψgh − µψgh )
′
τ−1
ψgh

(ψgh − µψgh )
}
× exp

{1
2

(γgh − µγgh )
′
τ−1
γgh

(γgh − µγgh )
}

× exp
{

1
2

(ξgh − µξgh )
′
τ−1
ξgh

(ξgh − µξgh )
} ]
. (34)
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3.2.2 Joint Posteriors

The inference about ϕ conditional on Dobs can be done by means of the Bayes’ theorem to construct a joint posterior
distribution,

p (ϕ|Dobs) =
L (ϕ|wi,Dobs) p (ϕ)∫ ∏

h,g
∏n

i=1 fY,T
(
yi j, di,r |ϕ, δi,r+1,wi

)
p (ϕ) dϕ

∝ L (ϕ|wi,Dobs) p (ϕ) , (35)

where p (ϕ|Dobs) denotes the joint posterior probability distribution, which is proportional to joint likelihood contribution
for each subject multiplied by the prior distribution. The samples are drawn from the posterior distribution using Gibbs
sampler in order to obtain posterior estimates. Hence, the full joint posterior distribution is given the expression

p (ϕ|Dobs) ∝
n∏

i=1

∫ 


ni∏
j=1

fy
(
yi, di,r |wi;ϕ

) ×
 mi∏

r=0

fT
(
di,r |wi; ϕT

) × fw (wi|ϕw)

 × p(ϕ)dwi

∝
n∏

i=1

∫ (2πσ2
ϵ

)−ni/2
exp

− 1
2σ2

ϵ

ni∑
j=1

[
yi −

(
x
′

i(ti j)β + z
′

i(ti j)wi

)]2




×αgh exp
{
γghdi,r + v

′

i,ghξgh + χ
′

i,gh(wi; di,r)ψgh

}δi,r+1

× exp

−∑
h,g

∫ di,r

0
αgh exp

{
γghsi,r + v

′

i,ghξgh + χ
′

i,gh(wi; si,r)ψgh

}
dsi,r


×|A|−1/2 exp

{
−1

2
(w
′

i A−1wi)
}
× exp

{
−1

2

(
β − µβ

)′
τ−1
β

(
β − µβ

)}
×

(
σ2
ϵ

)−a1−1
exp

{
− b1

σ2
ϵ

}
× |A|−(ν0+q+1)/2 exp

{
1
2

tr
(
A0 A−1

)}
×
[∏

h,g

α
agh−1
gh exp(−αghbgh) × exp

{
1
2

(ψgh − µψgh )
′
τ−1
ψgh

(ψgh − µψgh )
}

× exp
{

1
2

(γgh − µγgh )
′
τ−1
γgh

(γgh − µγgh )
}
× exp

{
1
2

(ξgh − µξgh )
′
τ−1
ξgh

(ξgh − µξgh )
} ]

dwi. (36)

As stated earlier, at this point in time, the model has become too complex and analytical evaluation of posterior distribution
is not possible. Therefore, Gibbs sampling can be used to obtain posterior estimates. In order to implement the Gibbs
sampling technique, the full conditional distribution are needed (see Appendix)

3.2 Model Comparison and Selection

In this subsection, we consider selecting models via the Deviance Information Criterion (DIC) (spiegelhalter et al., 2002).

Consider the parameter vector ϕ and observed data vectorDobs, then, the deviance Dev(ϕ) is defined as

Dev(ϕ) = −2 logL(ϕ|Dobs) (37)

where L(ϕ|Dobs) is given in (32).

For our joint multi-state semi-Markov model, we let Dev(ϕ) to be

Dev(ϕ) = −2
n∑

i=1

log(yi j, di,r, δi,r+1|ϕ). (38)

The posterior expected deviance is given by

Dev(ϕ) = Eϕ|Dobs

[
Dev(ϕ|Dobs)

]
. (39)

and the deviance evaluated at the posterior means of ϕ denoted by ϕ̄ is defined by

Dev(ϕ̄) = Dev(Eϕ|Dobs [ϕ]). (40)
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The difference between equation (40) and (39) is an estimate of the effective number of parameters pD written as

pD = Dev(ϕ) − Dev(ϕ̄). (41)

Then, the deviance information criterion, DIC is given by

DIC = 2Dev(ϕ) − Dev(ϕ̄). (42)

From equation (40) and (41), DIC can be written as

DIC =2Dev(ϕ) − (Dev(ϕ) − pD))

=Dev(ϕ) + pD. (43)

Equivalently,

DIC = Dev(ϕ̄) + 2pD. (44)

According to Spiegelhalter et al. (2002), the process of computing Dev(ϕ̄) involves the computing of n integrals as shown
in (28). Hence, this pose a major challenge on computing the overall likelihood of observed data in our joint model. One
possible approach to approximate equation (44) is to use Adaptive Gaussian Quadrature (AGQ) proposed by Pinheiro and
Bates, 1995. In this paper, we adapt Monte Carlo Markov Chain approach.

Let consider the sth MCMC sample, s = {1, 2, ...S }. Also consider the ith subject such that i = {1, 2, ...n}. Now the deviance
for the ith subject at the sth MCMC sample is defined as

Dev(s)
i

(
ϕ(s)

)
= −2 logLi

(
ϕ(s)|Dobs

)
, (45)

where

Li

(
ϕ(s)|Dobs

)
=

n∏
i=1

ni∏
j=1

mi∏
r=0

∫
wi

fY
(
yi j|xi,wi; ϕ

(s)
Y

)
fT

(
di,r |wi, δi,r+1, vi,gh; ϕ(s)

T

)
fw

(
wi|ϕ(s)

w

)
dwi. (46)

Then, the deviance over all individuals is given by

Dev
(
ϕ(s)|Dobs

)
= − 2

n∑
i=1

∫
wi

[ 
ni∑
j=1

log fY
(
yi|wi, xi; ϕ

(s)
Y

) +
 mi∑

r=0

log fT
(
di,r |wi, δi,r+1, vi,gh; ϕ(s)

T

)
+ log fw

(
wi|ϕ(s)

w

) ]
dwi. (47)

The posterior mean deviance across the MCMC samples and the deviance at the posterior means of the parameters can
then be estimated as follow respectively

Dev
(
ϕ(s)

)
=

1
S

S∑
s=1

[
− 2

n∑
i=1

∫
wi

[ 
ni∑
j=1

log fY
(
yi|wi, xi; ϕ

(s)
Y

) +
 mi∑

r=0

log fT
(
di,r |wi, δi,r+1, vi,gh; ϕ(s)

T

)
+ log fw

(
wi|ϕ(s)

w

) ]
dwi

∣∣∣∣∣Dobs

]
. (48)

Dev
(
ϕ̄
)
= − 2

n∑
i=1

∫
wi

[ 
ni∑
j=1

log fY
(
yi|wi, xi; ϕ̄Y

) +
 mi∑

r=0

log fT
(
di,r |wi, δi,r+1, vi,gh; ϕ̄T

)
+ log fw

(
wi|ϕ̄w

) ]
dwi. (49)
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Then, effective number of model parameters can be deduced from equation (48) and (49) as

pD =
1
S

S∑
s=1

[
− 2

n∑
i=1

∫
wi

[ 
ni∑
j=1

log fY
(
yi|wi, xi; ϕ

(s)
Y

) +
 mi∑

r=0

log fT
(
di,r |wi, δi,r+1, vi,gh; ϕ(s)

T

)
+ log fw

(
wi|ϕ(s)

w

) ]
dwi

∣∣∣∣∣Dobs

]
+ 2

n∑
i=1

∫
wi

[ 
ni∑
j=1

log fY
(
yi|wi, xi; ϕ̄Y

) +
 mi∑

r=0

log fT
(
di,r |wi, δi,r+1, vi,gh; ϕ̄T

)
+ log fw

(
wi|ϕ̄w

) ]
dwi. (50)

The DIC in equation (44) can be easily calculated from equation (49) and (50).

Base on the DIC, the model with the smallest DIC value is considered to be the model that would best predict a replicated
dataset which has the same structure as the current observed datasets. However, according to Geedipally at el., 2014, the
model is penalized by Dev(ϕ) which will decrease as the number of parameters in the model increases and pD, which
compensates for this effect by favouring the model with a smaller number of parameters. Therefore, it is very important
to note that the way the model is parametrized will have an impact on the outcomes of the deviance information criterion
values (Mwanyekange at el., 2018).

4. Simulation Study

In this section, we perform simulation under Markov Chain Monte Carlo (MCMC) to assess the performance of the
proposed methodology. The data were generated from a joint multi-state survival model with a univariate longitudinal
variable and a multi-state process (transition times process). We illustrate the proposed methodology by considering the
following Linear Mixed Effects model

yi(ti j) =x
′

i(ti j)β + z
′

i(ti j)wi + ϵi(ti j)
=µ∗i (ti j) + ϵi

=β0 + β1xi + β2ti j + wi0 + wi1ti j + ϵi(ti j),

where ϵi(ti j) ∼ N(0, σ2
ϵ ) = N(0, 0.540), and the vector of random effects wi = (wi0,wi1) is assumed to follow multivariate

normal distribution MVN(0, A), where A =
(
σ2

wi0
, ρσwi0σwi1 , ρσwi0σwi1 , σ

2
wi1

)
with σwi0 = 0.750, σwi1 = 0.150 and

ρ = 0.400.

We generated the data of n = 200 sample sizes and for each simulation, 1000 replicated datasets were considered. Each
subject is expected to have at-most ni = 8 number of repeated measurements taken at baseline and thereafter 7 visits, that
is ti j = {0.00, ..., 2.50}. After this period, subjects are said to be censored non-informatively

For the multi-state semi-Markov sub-model, we have

λi,gh(di,r |wi) = αgh exp
{
γghdi,r

}
exp

{
v
′

i,ghξgh + µ
∗
i (di,r)ψgh

}
, (Model I) (51)

λi,gh(di,r |wi) = αgh exp
{
γghdi,r

}
exp

{
v
′

i,ghξgh + ψgh,intw0i + ψgh,slopew1i

}
, (Model II) (52)

We set the vectors of true parameters of Model I and II as follows:

ξgh = (ξ01, ξ03, ξ12, ξ13, ξ23)
′
= (−0.150,−0.250,−0.391,−0.183,−1.514)

′
,

αgh = (α01, α03, α12, α13, α23) = (0.512, 0.145, 0.723, 0.601, 0.254)
′
,

γgh = (γ01, γ03, γ12, γ13, γ23)
′
= (0.230, 0.254, 0.149, 1.543, 2.114)

′
,

ψgh = (ψ01, ψ03, ψ12, ψ13, ψ23)
′
= (0.024, 0.216, 0.058, 0.045, 0.142)

′
,

ψgh,int = (ψ01,int, ψ03,int, ψ12,int, ψ13,int, ψ23,int)
′
= (0.024, 0.484, 0.126,−0.273,−0.0713)

′
,

ψgh,slope = (ψ01,slope, ψ03,slope, ψ12,slope, ψ13,slope, ψ23,slope) = (−0.015,−0.238,−0.045, 0.214, 0.241)
′
.

The values of baseline covariates were simulated as follows:

xi ∼ Bernoulli(0.50) and vi,gh ∼ N(15, 45)
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We generate the vector of true times t∗i = (t∗i,01, t
∗
i,03, t

∗
i,12, t

∗
i,13, t

∗
i,23)

′
by first simulate the survival probability, Ui,gh, from

Uniform(0,1) for each subject and solve for t∗i,gh from the following equation:

exp
{
−

∫ t∗i,gh

r
αgh exp{γghtgh} exp

{
ξghvi,gh + χi,gh(tgh)ψgh

}
dtgh

}
= Ui,gh, r ≥ 0, h ∈ {1, 2, 3} .

In particular, we generate t∗i,01 and t∗i,03 from

exp
{
−

∫ t∗i,0h

0
α0h exp{γ0ht0h} exp{ξ0hvi,0h + χi,0h(t0h)ψ0h}dt0h

}
= Ui,0h, h ∈ {1, 3} ,

and compute the time spent in state 0 for subject i as d∗i,0 = t∗i,0h − 0.

For the true transition times from state 1, t∗i,12 and t∗i,13 are generated from

exp

−
∫ t∗i,1h

t∗i,0h

α1h exp{γ1ht1h} exp{ξ1hvi,1h + χi,1h(t1h)ψ1h}dt1h

 = Ui,1h, h ∈ {2, 3} ,

and d∗i,1 = t∗i,1h − t∗i,0h.

Finally, t∗i,23 is generated from

exp

−
∫ t∗i,23

t∗i,1h

α23 exp{γ23t23} exp{ξ23vi,23 + χi,23(t23)ψ23}dt23

 = Ui,23,

with di,2 = t∗i,23 − t∗i,12.

The censoring times were drawn from an uniform distribution, Ci = U(0.05, 2.50). Then, we compute di,r = min(d∗i,r,Ci)
, δi,r+1 = 1 if d∗i,r ≤ Ci and 0 otherwise.

Note that, the sojourn times from Model II are generated in a similar manner.

The summary statistics of the estimated regression coefficients are presented in Table 1 including the true parameter
values, bias (Bias), estimates, standard error (S.E), root mean squared error (RMSE) and coverage probabilities (CP)
of 95% credible intervals (Cr.I). We compared joint modeling approach that includes the whole biomarker trajectory in
multi-state survival sub-model to the joint modeling approach in which only random effects are shared between two sub-
models. It is evident from Table 1 that estimators of the regression parameters of the longitudinal sub-model are relatively
unbiased in both modeling approaches. Our focus is mainly on the multi-state semi-Markov process. From the same
table, we clearly see that coverage probability dwells around 95% nominal level in both approaches. Overall, the joint
modeling approach with shared random effects shows better performance than the modeling approach with current level
of biomarker value.
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Table 1. Results from simulation study examining the performance of the proposed joint model

Model I Model II
Parameter True Estimate Bias S.E RMSE CP(%) Estimate Bias S.E RMSE CP(%)

n = 200
Longitudinal sub-model
β0 5.155 5.126 -0.029 0.078 0.118 0.935 5.139 -0.016 0.073 0.113 0.945
β1 3.015 3.131 0.116 0.073 0.170 0.965 3.147 0.132 0.062 0.148 0.945
β2 0.145 0.118 -0.027 0.048 0.210 0.924 0.194 0.049 0.041 0.197 0.972
σwi0 0.750 0.749 -0.001 0.075 0.145 0.968 0.762 0.012 0.073 0.134 0.988
σwi1 0.150 0.100 -0.050 0.008 0.161 0.916 0.105 -0.045 0.008 0.159 0.918
σϵ 0.540 0.527 -0.013 0.014 0.043 0.950 0.545 0.005 0.008 0.154 0.994
ρ 0.400 0.411 0.011 0.163 0.084 0.974 0.432 0.032 0.013 0.164 0.952
Transition Intensity Sub-model
ξ01 -0.150 -0.163 -0.013 0.013 0.324 0.924 -0.153 -0.003 0.009 0.075 0.981
ξ03 -0.250 -0.241 0.009 0.035 0.125 0.953 -0.243 0.007 0.027 0.119 0.974
ξ12 -0.391 -0.401 -0.010 0.184 0.495 0.965 -0.398 -0.007 0.142 0.362 0.954
ξ13 -0.183 -0.167 0.016 0.054 0.148 0.978 -0.175 0.008 0.007 0.035 0.968
ξ23 -1.514 -1.483 0.031 0.028 0.187 0.952 -1.531 0.017 0.017 0.142 0.948
α01 0.512 0.463 0.100 0.194 0.493 0.898 0.518 0.006 0.002 0.012 0.956
α03 0.145 0.156 0.014 0.021 0.352 0.960 0.152 0.010 0.008 0.053 0.968
α12 0.723 0.728 0.005 0.013 0.156 0.924 0.715 -0.008 0.009 0.206 0.918
α13 0.601 0.634 0.033 0.034 0.192 0.896 0.622 0.021 0.010 0.342 0.914
α23 2.522 2.494 -0.026 0.053 0.575 0.918 2.419 -0.109 0.026 0.153 0.908
γ01 0.230 0.239 0.009 0.034 0.063 0.952 0.218 -0.012 0.012 0.094 0.964
γ03 0.254 0.248 -0.006 0.043 0.228 0.946 0.258 -0.004 0.048 0.420 0.953
γ12 0.149 0.145 -0.004 0.021 0.032 0.938 0.154 0.005 0.008 0.096 0.942
γ13 1.543 1.571 0.028 0.043 0.045 0.960 1.548 0.005 0.013 0.190 0.968
γ23 2.114 2.124 0.010 0.195 0.289 0956 2.183 0.069 0.040 0.321 0.948
ψ01 0.024 0.018 -0.006 0.038 0.134 0.986 - - - - -
ψ03 0.216 0.219 0.003 0.025 0.503 0.948 - - - - -
ψ12 0.058 0.045 0.013 0.011 0.184 0.968 - - - - -
ψ13 0.045 0.048 -0.003 0.037 0.253 0.956 - - - - -
ψ23 0.142 0.143 0.001 0.022 0.055 0.974 - - - - -
ψ01,int 0.024 - - - - - 0.029 0.003 0.007 0.034 0.940
ψ01,slope -0.015 - - - - - -0.023 0.008 0.026 0.055 0.912
ψ03,int 0.484 - - - - - 0.479 -0.005 0.043 0.251 0.934
ψ03,slope -0.238 - - - - - -0.232 -0.006 0.034 0.329 0.924
ψ12,int 0.126 - - - - - 0.118 -0.008 0.009 0.085 0.958
ψ12,slope -0.045 - - - - - -0.049 0.004 0.142 0.365 0.894
ψ13,int -0.273 - - - - - -0.271 -0.002 0.008 0.074 0.914
ψ13,slope 0.214 - - - - - 0.308 0.094 0.169 0.512 0.793
ψ23,int -0.713 - - - - - -0.722 0.009 0.013 0.048 0.935
ψ23,slope 0.241 - - - - - 0.236 -0.005 0.007 0.127 0.940

5. An Application to Real Data

5.1 Data

In this section, we consider the data from the Federation Francophone de Cancerologie Digestive (FFCD) 2000-2005
Multi-center phase III clinical trial of patients diagnosed with metastatic colorectal cancer. The study was conducted
between February 2002 and January 2007 in France by FFCD. The main aim of the study was to examine the efficacy of
two treatment effects: Sequential arm (S) and Combination arm (C). For the purpose of the present study, we consider
datasets presented in Król et al. (2016) and Krol et al. (2017) in which 150 patients were randomly selected from the
same clinical trial. The data contains individual follow-up of tumor size measure (sum of the longest diameters of target
lesions) and time of new lesions(recurrent events). Moreover, some baseline covariates (age, WHO performance status and
previous resection), treatment arm (Combination vs Sequential), time of death or the last observed time for right censored.
A total of 906 tumor size measurements were recorded at subject specific follow-up. During the study period, 289 cases
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of recurrence and 121 death were also recorded. In this study, we chose to apply our joint multi-state semi-Markov model
to this datasets including only patients up to their second recurrence.
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Figure 3. Individual profiles of tumor size (S LD∗ = (S LD0.3 − 1)/0.3) measured during a visit. (a) Profiles for
individuals expecting to directly transit from state 0 to either state 1 or state 3. (b) Profiles for individuals expecting to

directly transit from state 1 to either state 2 or state 3. (c) Profiles for individuals expecting to transit from state 2 to
either state 3 or censored
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Figure 4. Kaplan-Meier curves for each transition

The multi-state semi-Markov process are presented through transitions between 4 states (see figure 1). At the first follow-
up in state 0 (0 recurrence), a patient can either experience a transition to state 1 (1st recurrence) or to an absorbing state 3
(death). After the first recurrence, a patient may experience a transition to state 2 (2nd recurrence) or move to an absorbing
state 3. After the second recurrence, we only considered the transition to an absorbing state 3, that is, patients with 3rd

recurrence are ignored in this study. In total, 90 patients experienced transition to state 1, 35 patients had experienced
second recurrence after the first recurrence. 41 patients die without experiencing any recurrence, 41 and 22 patients die
after first and second recurrence respectively.
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5.1.1 Longitudinal Sub-model

The following covariates are included in the longitudinal process (Linear mixed effect model); Treatment (1: Sequential
arm, 2: Combination arm), Age (1: < 60 years, 2: 60 − 69 years, 3: > 69 years), who.PS (1: status 0, 2: status 1 and 3:
status 2) and year the observation time. That is

yi(ti j) =µ∗i (ti j) + ϵi j

=β0 + β1agei + β2who.PS i + β3yeari j × treatmenti + wi0 + wi1 × yeari j + ϵi j, (53)

where yi denotes tumor size, which is the transformed sum of the longest diameter (S LD∗ = (S LD0.3 − 1)/0.3) measured
during the visit, the random effect wi = (wi0,wi1)

′
is assumed to be normal distributed with mean zero and variance-

covariance matrix A, wi ∼ MVN(0, A) and ϵi j ∼ N(0, σ2
ϵ ).

5.1.2 Multi-state Semi-Markov Sub-model

The following proportional transition intensities model includes previous resection (prev.resection (0: No, 1: Yes)) co-
variate, gap-time (duration) and the function of current values of tumor size-(Model I)

λi,gh(di,r) = λ0,gh(di,r) exp
{
ξ0,gh + ξ1,ghPrev.resi,gh + ψghµ

∗
i (di,r)

}
, ∀r ≥ 0, (54)

where λ0,gh(di,r) = αgh exp
{
γghdi,r

}
is the Gompertz baseline function and di,r is the sojourn time in each transient state.

Model II, use the shared random effects in the transition intensities function

λi,gh(di,r) = λ0,gh(di,r) exp
{
ξ0,gh + ξ1,ghPrev.resi,gh + ψgh,intwi,0 + ψgh,slopewi,1

}
, ∀r ≥ 0. (55)

In our Gibbs algorithm, we ran three parallel MCMC chains with different random generated initial values for 205 000
iterations. In order to avoid the influence of pre-convergence in our final posterior inference, 55 000 iterations were
discarded as burn-in. Hence, our posterior inferences are based on the last 150 000 iterations. For the prior distribu-
tions, we used standard non-informative prior distributions for the parameters. That is, β, γgh, ξgh and ψgh are assumed
to have normal distributions with mean zero and large variances (β ∼ N(0, 100), γgh ∼ N(0, 100), ξgh ∼ N(0, 100),
ψgh ∼ N(0, 100)). Similarly, we take standard normal prior for the association parameters ψgh,int and ψgh,slope in Model II.
For the shape parameter in the baseline transition intensity function αgh, an independent gamma prior. As stated in previ-
ous section, an inverse wishart prior distribution was taken (A ∼ Inv−Wishart(A0, v0)), where A0 is the prior distribution
for covariance matrix with v0 degree of freedom. Finally, inverse gamma was chosen for the error variance σ2

ϵ = 1/τ,
where τ ∼ Γ(0.01, 0.01).
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Table 2. Posterior estimates of the longitudinal sub-model for the two models

Transition
Model I Model II

Parameter Estimate S.E 95%Cr.I Estimate S.E 95%Cr.I

0→ 1

β0 (Intercept) 2.923 0.010 (2.047,3.846) 2.936 0.010 (2.057,3.859)
β1 (Age) -0.092 0.004 (-0.394,0.227) -0.071 0.003 (-0.396,0.243)
β2 (Who.PS) 0.287 0.004 (-0.084,0.640) 0.255 0.003 (-0.118,0.610)
β3 (Year vs Trt) -0.590 0.003 (-0.838,-0.333) -0.607 0.002 (-0.884,-0.328)
ρ 0.036 0.001 (-0.171,0.242) 0.042 0.000 (-0.165,0.248)
σwi0 2.522 0.001 (1.955,3.232) 2.514 0.001 (1.953, 3.222)
σwi1 3.180 0.002 (2.235,4.442) 3.160 0.003 (2.222,4.409)
σ2
ϵ 0.820 0.001 (0.771,0.873) 0.821 0.000 (0.772,0.874)

0→ 3

β0 (Intercept) 2.869 0.010 (1.969,3.767) 3.127 0.010 (2.254,3.980)
β1 (Age) -0.095 0.004 (-0.425,0.235) -0.086 0.003 (-0.381,0.213)
β2 (Who.PS) 0.317 0.004 (-0.031,0.660) 0.173 0.004 (-0.173,0.527)
β3 (Year vs Trt) -0.528 0.003 (-0.769,-0.271) -0.684 0.003 (-0.968,-0.403)
ρ 0.051 0.001 (-0.158,0.258) 0.021 0.001 (-0.185,0.230)
σwi0 2.526 0.000 (1.960,3.237) 2.534 0.000 (1.965,3.249)
σwi1 3.13 0.003 (2.204,4.369) 3.308 0.003 (2.309,4.652)
σ2
ϵ 0.822 0.000 (0.772,0.876) 0.821 0.001 (0.772,0.876)

1→ 2

β0 (Intercept) 3.003 0.019 (1.540,4.545) 2.991 0.018 (1.449,4.453)
β1 (Age) -0.479 0.002 (-0.655,-0.299) -0.480 0.001 (-0.655,-0.305)
β2 (Who.PS) 0.332 0.002 (0.149,0.522) 0.334 0.001 (0.151,0.519)
β3 (Year vs Trt) -1.045 0.004 (-1.367,-0.715) -1.041 0.002 (-1.368,-0.718)
ρ 0.401 0.003 (-0.098,0.760) 0.412 0.002 (-0.076,0.764)
σwi0 2.849 0.001 (1.995,4.203) 2.854 0.006 (2.000,4.180)
σwi1 3.110 0.006 (2.154,4.607) 2.977 0.005 (2.101,4.331)
σ2
ϵ 1.482 0.000 (1.398,1.573) 1.483 0.000 (1.398,1.574)

1→ 3

β0 (Intercept) 2.996 0.020 (1.433,4.633) 2.990 0.018 (1.523,4.426)
β1 (Age) -0.478 0.002 (-0.651,-0.299) -0.490 0.001 (-0.666,-0.314)
β2 (Who.PS) 0.329 0.002 (0.142,0.520) 0.338 0.001 (0.155,0.522)
β3 (Year vs Trt) -1.051 0.004 (-1.391,-0.725) 1.089 0.001 (0.751,1.423)
ρ 0.376 0.003 (-0.133,0.749) 0.442 0.003 (-0.045,0.779)
σwi0 8.746 0.044 (4.107,18.23) 8.536 0.046 (3.991,17.96)
σwi1 9.225 0.037 (4.424,18.72) 9.180 0.038 (4.399,18.810)
σ2
ϵ 1.483 0.000 (1.398,1.574) 1.483 0.000 (1.398,1.573)

2→ 3

β0 (Intercept) 2.402 0.053 (-1.443,5.984) 3.129 0.051 (-1.011,3.973)
β1 (Age) -0.166 0.004 (-0.437,0.113) -0.161 0.001 (-0.441,0.120)
β2 (Who.PS) 0.367 0.004 (0.081,0.653) 0.372 0.001 (0.086,0.657)
β3 (Year vs Trt) 0.780 0.007 (0.211,1.304) 0.754 0.003 (0.203,1.298)
ρ 0.368 0.004 (-0.324,0.845) 0.368 0.004 (-0.388,0.841)
σwi0 21.23 0.231 (6.896,58.610) 0.089 0.001 (0.023,0.203)
σwi1 21.1 0.173 (7.138,58.420) 0.089 0.000 (0.025,0.198)
σ2
ϵ 1.417 0.000 (1.287,1.561) 1.417 0.000 (1.288,1.562)
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Table 3. Posterior estimates of the Multi-state survival sub-model for the two modeling approaches

Transition Model I Model II
Parameter Estimate S.E 95%Cr.I estimate S.E 95%Cr.I

0→ 1

ξ01 (Prev.res) -0.200 0.005 (-0.622,0.225) -0.224 0.002 (-0.661, 0.218)
γ01 (Duration) -0.010 0.004 (-0.372,0.344) -0.058 0.001 (-0.378,0.243)
ψ01 0.092 0.002 (-0.051,0.241) - - -
ψ12,int - - - 0.125 0.001 (-0.041,0.298)
ψ12,slope - - - -0.035 0.002 (-0.276,0.241)
α01 0.619 0.005 (0.303,1.131) 0.797 0.001 (0.519,1.144)

0→ 3

ξ03 (Prev.res) -0.499 0.008 (-1.141,0.146) -0.764 0.003 (-1.519,-0.044)
γ03 (Duration) 0.252 0.006 (-0.258,0.722) 0.245 0.002 (-0.254,0.748)
ψ03 0.290 0.003 (0.035, 0.574) - - -
ψ12,int - - - 0.495 0.002 (0.146,0.892)
ψ12,slope - - - -0.328 0.002 (-0.733,0.080)
α03 0.170 0.002 (0.042,0.414) 0.321 0.001 (0.146,0.563)

1→ 2

ξ12 (Prev.res) -0.183 0.009 (-0.945,0.622) -0.226 0.005 (-1.029,0.581)
γ12 (duration) 0.163 0.015 (-0.950,1.496) 0.073 0.005 (-0.868,1.004)
ψ12 0.091 0.005 (-0.298,0.496) - - -
ψ12,int - - - 0.087 0.004 (-0.340,0.523)
ψ12,slope - - - -0.054 0.004 (-0.479,0.353)
α12 0.710 0.011 (0.089,1.817) 0.765 0.003 (0.319,1.413)

1→ 3

ξ13 (Prev.res) -0.391 0.008 (-1.061,0.255) -0.481 0.007 (-1.395,0.337)
γ13 (Duration) 0.670 0.011 (-0.125,1.783) 1.029 0.009 (0.123,2.137)
ψ13 0.056 0.004 (-0.235,0.405) - - -
ψ13,int - - - -0.236 0.007 (-0.863,0.394)
ψ13,slope - - 0.209 0.007 (-0.365,0.842)
α13 0.857 0.011 (0.172,1.914) 0.869 0.003 (0.423,1.482)

2→ 3

ξ23 (Prev.res) -1.744 0.022 (-3.579,-0.175) -1.725 0.020 (-3.894, -0.006)
γ23 (Duration) 2.577 0.047 (-0.355, 6.507) 2.21 0.028 (-0.220,5.452)
ψ23 0.076 0.011 (-0.621, 0.856) - -
ψ13,int - - - -0.734 0.021 (-2.504,0.709)
ψ13,slope - - 0.298 0.014 (-0.597,1.638)
α23 3.408 0.100 (0.202,13.530) 2.612 0.054 (0.336,8.007)

Table 4. Deviance Information Criterion

Model Dev(ϕ) Dev(ϕ̄) pD DIC
I 2197.0 2169.0 28.44 2226.0
II 2177.0 2153.0 24.17 2201.0

Next, we present results obtained from the samples posterior distribution. Table 2 presents the posterior estimates long
with their standard errors (S.E) and 95% credible intervals (Cr.I) for longitudinal sub-model for both models. We clearly
see that the joint modeling approach with the current value of biomarker and joint modeling approach with shared random
effects are fairly close to each other in terms of parameter estimation. We observed that age of patients is only significantly
associated with tumor size in both models for patients transiting from state 1 to state 3, since the 95% credible interval
for β1 does not include the value 0. However, this has negative relationship to tumor size, implying that, as patient’s age
increases, the tumor size of the patient will decrease. Moreover, the time dependent treatment effect seems to a significant
factor tumor size in all transitions for both both models. On the other hand, the performance status (Who.PS) indicate
significant effect on the tumor size for 1 → 2, 1 → 3 and 2 → 3 transitions provided that the 95% credible interval for
parameter β2 does not include the value 0. In all the transitions observed, random effects have 95% credible intervals
excluding value 0, implying significant heterogeneity for tumor size trajectory.

For the transition intensity process, the covariate of interest were duration and previous resection. From Table 3, we notice
that patients previous resection had a negative effect on the transition intensity. However, 95% credible intervals for this
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parameter ξgh in both models include value 0 for 0 → 1, 0 → 3, 1 → 2, and 1 → 3, implying that the negative effect is
not significant. Time spent in each transient state is expected to have association in respect to different length of times
moving from one state to the another. However, it is worth mentioning that sojourn time is negatively associated with
transition intensity from transient states to the next possible transient state and positively associated for transitions from
transient states to an absorbing state. The association between the longitudinal process and transition intensity process for
0 → 1, 0 → 3, 1 → 2 and 2 → 3 showed positive strength. Nevertheless, studies by Król et al. (2016) and Król et al.
(2017) gave some important details on the study. It can be asserted from their studies that, performance status (Who.PS)
show a strong effect on the progression to both absorbing state (death) and transient state(new lesions). Therefore, we can
confidently say that this study provides some additional insights to the study of longitudinal outcomes and survival times
in joint modeling framework.

Finally, we compared the two joint modeling approaches using the Deviance Information Criterion (DIC). We observed
the DIC values at each transition. From Table 4, it is evident that joint model with shared random effects appears to be a
better model with lower DIC values.

6. Discussion

Joint models of longitudinal and multi-state data are less explored in literature. Hence, in this article, we have discussed
the Bayesian approach for joint modeling of longitudinal and multi-state data. We have used linear mixed effect model
for the longitudinal process and semi-proportional transition intensity function for the multi-state process. In addition, we
assume that multi-state data exhibit a semi-Markov process whereby transition intensity from a transient state depends on
the sojourn/holding time at which subject stayed at the current state. Furthermore, the sojourn time in each transient state
is assumed to follow Gompertz distribution. We have used different formulations that illustrates how the two processes
are linked together. In the first formulation (Model I), the multivariate function which represents the true value of the
biomarker is included in the transition intensity function. While in the second formulation (Model II), the multivariate
function represents the random effects that are included in the transition intensity function.

We conducted a simulation study in order to assess the performance of the proposed joint modeling approach. Further-
more, we applied the proposed joint modeling approaches to a sample of patients from colorectal phase III clinical trial
FFCD 2000-05 dataset with the aim of identifying prognostic factors that are significantly associated with either longitu-
dinal or transition intensity process. Generally, small differences between the two models were observed for the parameter
estimates. We have found out that the proposed methods behave well in terms of parameter estimation as its posterior
estimates converges to their target distributions.

One limitation of our study may be the number of states. We have only looked at four states because it will be much
complex with many states. Hence, this joint modeling approach can be extended to more complex cases, in which more
than one longitudinal processes can be modelled together with multi-state survival process. However such extensions
comes with computation and implementation challenges. Therefore, substantial work is needed in terms of software
development for this growing field of research.

In short we have introduced the model that jointly analyse longitudinal and multi-state data with an assumption that multi-
state data has a semi-Markov process. The simulation study in section 4 empirically demonstrated good performance in
terms of parameter estimation. Moreover, we have demonstrated how this model can be applied to real life data. Even
though this study cover only a small area in a field of joint modeling framework, we are confident to say that it had
contributed to the existing literature.
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Appendix

Full Conditional Densities

This section presents details for the full conditional distributions of the parameters used in the Gibbs sampling algorithm,
where p[.|.] represent conditional densities.

i) The full conditional distribution of β is given by

p
[
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] ∝ n∏
i=1
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ii) The full conditional of 1/σ2
ϵ takes the form
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iii) The full conditional distribution of the inverse covariance variance A−1 takes the form
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iv) The full conditional distribution of shape parameter αgh in the survival sub-model is given by
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v) The full conditional distribution of ψgh that quantifies association between the two processes is given by
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vi) The full conditional distribution of γgh takes the form
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vii) The full conditional distribution of ξgh is
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These densities are obtained through Gibbs sampling algorithm by retaining only those terms in equation (36) involve β,
σ2
ϵ , A−1, αgh, ξgh γghand ψgh. Note that ”rest” denotes the vector of all parameters and data excluding the parameter to be

estimated, e.g.,
[
β|σ2

ϵ , A−1, αgh, ξgh, γgh, ψgh;Dobs

]
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